Skip to main content

PICASSO

Planetary Science Division / Science Mission Directorate

Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO)

The PICASSO program is funding the development of instruments to accomplish future science missions across the Solar System. The two tables below show the applicability of the funded instruments to science goals as described by the Planetary Science Decadal Study, and by instrument type.

PICASSO Instruments Encompass Many Instrument Types All planetary bodies
Instrument Type Mercury Venus The Moon Mars Asteroids, Trojans, KBOs, NEOs Comets Gas Giants (Saturn, Uranus, Neptune) Titan Icy Moons (Europa, Enceladus, Ganymede, Callisto) Other gas giant moons and rings With atmosphere Without atmosphere Other
High energy (x-ray, g-ray, neutron, etc.) P15-058
P15-071
P15-058 P18-073
P15-058
P15-071
P18-073
P17-094
P15-058
P15-071
P15-058
P15-071
P15-058
P15-071
P15-058
P15-071
P18-073
P15-058
P18-073
P15-058
P15-071
P18-073
P15-058
P15-071
Ultraviolet/ Visible P17-083
P15-022
P18-033
P18-076
P17-083
P15-022
P17-083
P16-032
P15-022
P15-052
P17-083
P16-032
P15-022
P15-052
P16-075
P16-032
P15-022
P15-052
P16-032
P15-022
P15-052
P18-076
P15-022
P18-076
P17-083
P16-075
P16-032
P15-022
P15-052
P17-083
P16-075
P16-032
P15-022
P15-052
P17-083
P16-075
P16-032
P15-022
P16-032
P15-022
P16-032
P16-032
P15-022
P16-032
Microscopy
LIDAR P17-021 P17-021 P17-021 P17-021 P17-021 P17-021 P17-021 P17-021
Infrared P17-021
P17-025
P17-021
P17-025
P17-030
P17-048
P16-074
P17-021
P17-025
P17-048
P15-053
P17-021
P17-025
P17-030
P17-048
P16-055
P15-053
P17-021
P17-025
P17-048
P16-101
P15-053
P18-056
P17-021
P17-025
P17-048
P16-054
P15-053
P17-025
P17-030
P16-074
P17-021
P17-025
P17-030
P17-048
P15-053
P18-056
P17-021
P17-025
P17-030
P17-048
P16-054
P16-055
P16-074
P15-053
P17-021
P17-025
P17-030
P17-048
P16-101
P18-056
Raman P18-013
P16-012
P18-013
P16-012
P18-013
P16-012
P18-013 P18-013 P18-013 P18-013
P16-012
P18-013
Thermal Infrared P18-047 P18-047
Sub-mm/THz P18-031
P17-037
P17-037 P18-031
P17-037
P17-037 P18-031
P17-037
P18-031 P18-031
P17-037
P18-031
P17-037
P18-031
P17-037
P17-037
Radar/GPR P15-079 P16-015
P15-093
P18-036
P16-015
P15-079
P15-093
P18-036
P15-079
P18-036 P15-093
Mass Spectrometry P17-109 P18-003
P17-109
P16-096
P18-003
P17-109
P16-078
P16-096
P18-003
P17-109
P16-096
P17-109
P15-016
P18-003
P17-109
P16-078
P15-016
P18-003
P17-109
P16-078
P15-016
P18-003
P17-109
Seismometer P17-029 P17-029 P17-029 P17-029 P16-002 P16-002 P17-029 P17-029
Magnetometer P15-100 P15-100 P15-100 P15-100 P15-100 P15-100 P15-100 P15-100 P15-100 P15-100
Gravitometer
Heat Sensor P16-004
Atmospheric probe P16-044
P15-009
P15-010
P15-009
P15-010
P15-009 P17-030
P16-044
P15-009
P15-009
P15-010
P17-030
Dust/Saltation probe P17-089
P17-126
P16-005
P17-089
P17-126
P16-005
P17-089
P17-126
P17-089
P17-126
P17-126
Ice/Regolith Sampler P16-078 P16-078 P16-078
Chemical Sensor P15-062 P18-027
P18-106
P16-078
P15-062
P18-106 P18-106 P18-027
P18-106
P16-078
P18-027
P18-106
P16-078
P15-062
Sampler/Extractor/ Separator P16-003
P16-090
P17-094
P16-078
P16-090
P16-003
P16-090
P16-003 P16-078 P16-078 P16-003
Plasma Probe P16-040 P16-040 P16-040 P16-040 P16-040 P16-040 P16-040 P16-040 P16-040 P16-040
Biological sensor P16-032 P16-032

PICASSO Instruments Address Decadal Science Themes Jupiter, Saturn, Uranus, Neptune Europa, Enceladus, Ganymede, Callisto All planetary bodies
Themes Priority Questions Relevant Measurement Capabilities Mercury Venus The Moon Mars Asteroids, Trojans, KBOs, NEOs Comets Gas Giants Titan Icy Moons Other gas giant moons and rings With atmosphere Without atmosphere Other
Building New Worlds What were the initial stages, conditions, and processes of solar system formation and the nature of the interstellar matter that was incorporated? Mineralogy
(alteration history)
P18-013
P16-003
P15-058
P15-071
P18-013
P16-003
P15-058
P15-071
P16-003
P15-071
Organic chemistry
(traceability to ISM reaction pathways)
P18-013
P18-106
P16-075
P15-022
P18-013
P18-106
P15-016
P15-022
Geochronology
(age dating of planetary body)
P16-090
P16-096
Compositional mapping
(global bulk chemistry)
P17-021
P17-025
P17-037
P17-048
P15-058
P15-071
P18-031
P18-056
P17-021
P17-025
P17-037
P17-048
P16-054
P15-058
P15-071
P15-071
How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? Magnetometry (e.g., Dynamo orientation)
Mineralogy (e.g., chemistry consistent with different orbital position) P18-013
P15-058
P15-071
P18-013
P15-058
P15-071
P18-013
P15-058
P18-013
P15-058
P15-071
P18-013 P15-071
What governed the accretion, supply of water, chemistry, and internal differentiation of the inner planets and the evolution of their atmospheres, and what roles did bombardment by large projectiles play? Isotopic chemistry
(e.g., atmospheric/exospheric signatures, trapped volatiles, signatures of atmosphere-surface interactions)
P18-076
P17-021
P17-025
P17-037
P17-048
P17-083
P15-009
P15-010
P15-058
P18-003
P17-021
P17-025
P17-037
P17-048
P17-083
P15-058
P18-003
P17-021
P17-025
P17-037
P17-048
P17-083
P17-094
P16-055
P16-078
P15-009
P15-010
P15-052
P15-058
P18-003
P17-021
P17-025
P17-037
P17-048
P17-083
P15-052
P15-058
P18-003
P17-021
P17-025
P17-037
P17-048
P17-083
P16-054
P15-009
P15-052
P15-058
Interior structure (e.g., seismic activity) P17-021
P15-093
P17-021
P15-093
P16-002 P16-002
Geology (imaging) P16-012
P16-074
P17-021
P16-012
P16-012
P15-053
P16-012
P15-053
P16-012
P15-053
Planetary Habitats What were the primordial sources of organic matter, and where does organic synthesis continue today? Mineralogy (alteration history) P18-013
P16-012
P15-058
P18-013
P17-021
P16-012
P15-058
P18-013
P17-021
P16-012
P15-058
P15-058 P16-012
P15-058
P15-071
Organic chemistry (traceability to known reaction pathways) P18-013
P18-106
P16-012
P16-055
P16-078
P15-022
P18-013
P18-106
P16-012
P16-075
P15-022
P18-013
P18-106
P16-012
P15-022
P18-106
P16-078
P16-075
P15-016
P18-106
P16-012
P16-075
P16-078
P16-055
P15-016
P16-032 P16-032
Compositional mapping (global bulk chemistry) P17-025
P16-012
P15-071
P18-031
P18-056
P17-025
P16-012
P15-071
P18-031
P18-056
P18-031
P18-056
P16-012
P15-071
P16-032 P16-032
P15-071
Sample acquisition (subsurface environments) P16-078 P16-003
P15-071
P16-003
P15-071
P16-078 P16-078
P15-071
P16-003
P15-071
Did Mars or Venus host ancient aqueous environments conducive to early life, and is there evidence that life emerged? Mineralogy (alteration history) P18-013
P16-012
P18-013
Organic chemistry (traceability to ISM reaction pathways) P16-032
P16-012
P15-022
P15-022
P18-003
P18-013
P18-106
P16-032
P16-055
P15-022
P15-062
Compositional mapping (global bulk chemistry) P16-032
P16-012
P16-032
Isotopic chemistry (e.g., atmospheric signatures, trapped volatiles, signatures of atmosphere-surface interactions) P18-076
P16-044
P18-003
P16-078
P15-052
Interior structure (e.g., seismic activity) P17-029
P15-079
P18-036
P17-029
P15-079
P15-093
Geology (imaging) P18-047
P16-012
P16-074
P16-012
P15-053
Sample acquisition
(subsurface environments)
P16-012 P16-078
P16-012
Beyond Earth, are there modern habitats elsewhere in the solar system with necessary conditions, organic matter, water, energy, and nutrients to sustain life, and do organisms live there now? thermal mapping
(hotspots, plumes, recent geologic activity)
P15-022 P15-022 P15-022
Mineralogy (alteration history) P18-013
P16-012
P18-013 P18-013
P16-012
P15-071
P15-071
Organic chemistry (traceability to prebiotic pathways, potential biochemistry) P18-003
P18-013
P18-027
P18-106
P17-037
P16-012
P16-055
P15-016
P15-062
P18-003
P18-013
P18-027
P18-106
P17-058
P17-037
P15-016
P15-062
P18-003
P18-013
P18-027
P18-106
P17-058
P17-037
P16-012
P16-055
P16-075
P15-016
P15-062
P16-032 P16-032
Compositional mapping (global bulk chemistry) P16-012
P15-052
P15-052 P16-012
P16-054
P15-052
P15-071
P16-032 P16-032
P15-071
Isotopic chemistry (e.g., atmospheric/exospheric/plume signatures, trapped volatiles, signatures of atmosphere-surface interactions) P18-003
P17-037
P16-078
P15-022
P18-003
P18-076
P17-037
P16-078
P15-022
P18-003
P17-037
P16-078
P16-054
P15-022
Interior structure and gravity (e.g., ice thickness and structure, identification of subsurface reservoirs and/or oceans) P18-036
P18-073
P17-021
P17-029
P16-015
P15-079
P18-036
P18-073
P15-100
P18-036
P18-073
P16-004
P15-100
Geology (imaging, evidence for present-day activity) P16.012
P15-053
P15-053 P16-012
P15-053
P16-032 P16-032
P15-071
Sample acquisition (subsurface environments) P16-078
P16-012
P16-078 P16-012
P16-078
P16-003
Workings of solar systems How do the giant planets serve as laboratories to understand Earth, the solar system, and extrasolar planetary systems? Isotopic chemistry (e.g., atmospheric/exospheric/plume signatures, trapped volatiles, signatures of atmosphere-surface interactions) P18-031
P18-056
P18-076
P17-025
P16-044
P15-009
Compositional mapping (global bulk chemistry) P18-031
P18-056
P18-076
P15-071
P15-071
Magnetometry (e.g., Dynamo orientation) P15-100
Imaging of ring and satellite dynamics P15-022
What solar system bodies endanger Earth’s biosphere, and what mechanisms shield it? Magnetometry (e.g., magnetosphere structure) P16-040
P15-100
P15-022
P16-040
P15-100
P15-022
P16-040
P15-100
P15-022
P16-040
P15-100
P15-022
Imaging, characterization of near-Earth objects P15-022 P15-022 P15-022 P16-074
P15-022
Particles and Fields (intersection with heliophysics, space weather) P16-040
P15-071
P15-022
P16-040
P15-071
P15-022
P16-040
P15-071
P15-022
P16-040
P15-071
P15-022
P15-071 P15-071
Can understanding the roles of physics, chemistry, geology, and dynamics in driving planetary atmospheres and climates lead to a better understanding of climate change on Earth? atmospheric chemistry/dynamics at Venus, Mars (e.g., profile measurements from probe) P18-047
P18-076
P17-021
P17-025
P17-030
P17-037
P17-048
P17-083
P16-044
P15-009
P15-010
P15-022
P17-021
P17-025
P17-037
P17-048
P17-083
P15-009
P15-010
P15-022
P18-076
P17-025
P17-030
P16-044
P16-074
P15-009
P15-022
P18-076
P17-021
P17-025
P17-030
P17-037
P17-048
P17-083
P15-009
P15-010
P15-022
Geology (imaging) P18-033 P17-126
P15-053
P17-126
Compositional mapping (global bulk chemistry) P15-058 P15-058 P15-058 P15-058
surface chemistry P17-025
P16-005
P15-052
P15-052
sample acquisition (subsurface environments) P17-094
Interior structure and gravity (e.g., seismic activity, subsurface volatile reservoirs) P17-029
P16-074
P15-079
P17-021
P17-029
P15-079
P15-093
P17-021
P17-029
P15-079
P15-093
Mineralogy (planetary evolution)
Magnetometry (e.g., magnetosphere structure) P16-040
P15-022
P16-040
P15-022
P16-040
P15-022
P16-040
P15-022
How have the myriad chemical and physical processes that shaped the solar system operated, interacted, and evolved over time? atmospheric chemistry/dynamics (e.g., profile measurements from probe) P15-022 P18-047
P18-076
P17-030
P17-037
P16-044
P15-009
P15-010
P15-022
P15-022 P17-037
P15-009
P15-010
P15-022
P15-022 P15-009
P15-022
P18-076
P17-025
P17-030
P17-037
P16-044
P16-074
P15-009
P15-022
P18-031
P18-056
P18-076
P17-025
P17-030
P17-037
P15-009
P15-010
P15-022
P18-031
P18-056
P15-022
P18-031
P18-056
P15-022
P17-025
P17-030
P17-037
P15-022
Geology (imaging) P18-047 P18-047 P17-089
P17-126
P15-053
P17-089
P17-126
P15-053
P17-089
P15-053
P17-089
P15-053
P17-126
P15-053
P15-053 P16-074
Compositional mapping (global bulk chemistry) P15-071 P15-058 P17-089
P15-058
P15-071
P17-089
P15-058
P17-089
P15-058
P15-071
P17-089
P15-058
P15-071
P15-071 P15-058 P15-058
P15-071
P15-058
P15-071
P15-071
surface chemistry P15-071 P17-109
P16-090
P16-096
P15-052
P15-071
P17-109
P16-005
P16-096
P16-090
P17-109
P16-090
P16-096
P16-101
P15-052
P15-071
P17-109
P15-052
P15-071
P15-071 P17-109
P15-052
P17-109
P15-052
P15-071
P17-109
P16-101
P15-071
P15-071
sample acquisition (subsurface environments) P17-094 P17-089
Interior structure and gravity (e.g., seismic activity, subsurface volatile reservoirs) P17-021
P17-029
P17-029
P16-074
P15-079
P18-036
P18-073
P17-021
P17-029
P16-015
P15-093
P18-036
P18-073
P17-021
P17-029
P16-015
P15-079
P15-093
P17-021
P16-002
P16-002 P18-036
P18-073
P17-021
P17-029
P15-079
P18-036
P18-073
P17-021
P17-029
P16-004
P18-036
P18-073
P17-029
P16-074
P15-093
Mineralogy (planetary evolution) P15-071 P18-013 P18-013
P15-071
P18-013
P15-071
P18-013
P15-071
P15-071 P18-013 P18-013
P15-071
P18-013
P15-071
P15-071
Magnetometry (e.g., magnetospheic dynamics) P16-040 P16-040 P16-040 P16-040 P16-040 P16-040 P16-040 P16-040 P16-040 P16-040
Imaging, characterization of near-Earth objects P17-089

Martian Anemometer

A Simplified Martian Acoustic Anemometer

Mars, Titan and Venus surface/aerial platforms, Earth stratosphere


Polarization Nephelometer

Planetary Polarization Nephelometer

Surface, aerial & descent probe platforms for Venus, Titan or Mars. Giant Planet Descent probes, Moon landers & comet missions


Martian Dust

A Printed Circuitboard Analyzer for Characterizing the Charge and Mass of Martian Dust

Measure size and electrical charge on dust in Mars atmosphere


Organic Detection

Detection of Amino Acids/Organics on an Open-Tubular Ion/Liquid Chromatograph

Ion Chromatograph with biosignature and organic detection capabilities for planetary missions


Surface Compositions

Ultra-bright scintillator for planetary gamma ray spectroscopy

Elemental composition of the surfaces of airless bodies to meter depths, planetary atmospheres, the surface of Venus; versatile deployment on orbiters, rovers, landers, and sondes.


Gravity Measurements

Development of Tensor Superconducting Gravity Gradiometer for Planetary Missions

To develop a compact tensor superconducting gravity gradiometer (SGG) for obtaining accurate gravimetric measurements from planetary orbits. Test masses will be suspended by soft magnetic springs to achieve the required high sensitivity in a compact device.


High Temperature Electronics

High Temperature Electronics

Design, fabricate, and demonstrate a set of Core High Temperature Electronics operating at 500˚C for a range of planetary applications, including Venus surface missions


Venus Interior

Planetary Heat-Flux Sensor for Venus

Determine energy loss from the Venus interior by measuring heat flow from the planet’s surface.

Planetary heat flow constrains radiogenic abundances, the level of geological activity, and helps distinguish among various hypotheses of planetary evolution.


Infrared Imager

Advanced Multispectral Infrared Microimager (AMIM) for Planetary Surface Exploration

Any planetary surface (e.g., Moon, Mars, asteroids, comets)


Atmospheric Gases

Low-Power Long-Wavelength Infrared Sources for tunable Laser Spectrometers on New Frontiers and Discovery Missions

Using tunable laser spectroscopy (TLS) techniques, single-mode lasers are able to resolve absorption lines of atmospheric gases with low concentration (few parts per mil) and varying isotopic composition. New instruments with novel low-dissipation, long-wavelength infrared (LWIR) sources will target compounds related to key scientific objectives for future planetary missions.


Harsh Environment Magnetometer

Miniaturized solid-state based vector magnetometer for planetary field mapping

This magnetometer can be targeted for any planetary body, satellite, asteroid, or comet with a magnetic field, especially those in harsh high temperature and high radiation environments.


Magnetic Fields

Solving Fundamental Technical Challenges toward a Space-qualified Miniature Absolute Scalar Magnetometer

Novel magnetometer based on micro-fabricated alkali-metal vapor cell yields high absolute accuracy and good long-term stability at a fraction of the mass and power resources of present state-of-the-art instruments. The high-accuracy yet low-resource instrument enables in-flight calibration of vector magnetic field data to meet the science requirements for a wide variety of planetary science investigations, such as characterizing Europa’s sub-surface oceans and Uranus’ offset multi-pole field.


Organic Compounds

Millimeter-wave spectrometer for chirality and relative abundance determination of amino acid biomarkers (ChiralSpec)

Atmosphere, surface, and subsurface of Enceladus, Europa, Titan, and Mars; any bodies where amino acids, fatty acids, and other organic compounds are in gas phase or can be brought into gas phase.


Neutron Detection

Next Generation Neutron and Gamma-Ray Spectrometer for Planetary Spacecraft

Single detector for neutrons and γ-rays to measure near surface hydrogen and rock-forming elements

Enables probing of sub-surface (< 50cm) so geochemical data more like bulk

Usable on orbiters (passive mode using cosmic rays as source) and landers (active mode using a pulsed neutron generator)


Space Plasma

The Development of a Double Hemispherical Probe for the Advancement of Space Plasma Measurements

To improve the understanding of space plasma in harsh environments, including low-density plasmas, high surface-emission environments, and dust-rich as well as oxygen-rich plasmas


Organic Analysis

The Small Bodies/Icy Moon Penetrator Organic Analyzer (SB/IM-POA)

Analyze organic compounds (polycyclic aromatics and primary amines) at <10 ppb from planetary sub-surface material after kinetic penetration with the site.

An organic analysis instrument, capable of detecting signs of life, applicable to probing the sub-surface of Europa and other icy moons.


Minerals

High-speed Pulsed Raman (HiPuR) for Identification of Minerals and Organics

Landers for planetary bodies


Planetary Geology

Miniature Spatial Heterodyne Time-Resolved Raman Spectrometer (SHRS) for Planetary Surface and Subsurface Boreholes Mineralogy

Miniature, interferometry-based, high-throughput, time-resolved Raman Spectrometer for surface and sub-surface planetary measurements. This is a paradigm shifting new technology that will broaden the applicability of Raman for planetary spaceraft and landers used for planetary geology, water and ice measurements, and the search for organic molecules indicative of life.


Atmospheric Descent

Plezoelectric microvalve for atmospheric descent sampling

All planetary bodies with atmospheres


Mineralogy

Standoff Ultra-Compact Raman (SUCR) system development for faster daytime mineralogy and Raman imaging

A standoff micro-Raman system with rapid analytical speed will be applicable practically anywhere landed missions are attempted, such as landers or rovers on Mars, Europa, and Moon.


Micro-Seismometer

Development of a Low Power, Low Mass, Small and Easily Deployable Planetary Broadband Micro-Seismometer

Mars, Ocean Worlds (e.g., Europa), Asteroids


Seismic Laser

Seismic Orbital Laser VibrometEr (SOLVE)

Cometary nuclei, asteroids, and small moons like Phobos


Spectroscopy

Frequency Agile Heterodyne Detector for Submillimeter Spectroscopy of Planets and Comets

Development of a 2.5 THz electrically tunable heterodyne sensor for molecular line spectroscopy operating at 50 – 70K.

The detector goals are: NT ≈ 2000K, PLO ≈ 20 µW, IF BW ≈ 5-10 GHz

Science enabled by this sensor:


Gas Spectrometer

Gas Spectrometer on a Chip

Advances in commercial CMOS technology have enabled entire millimeter wave transceivers to be built on a single-chip. With development of the necessary circuitry we will demonstrate the utility of this technology for high-sensitivity in-situ sensing of a wide variety of gas-phase molecules. The compact instrument will complement mass-spectrometry and provide exquisite specificity to composition measurements. The technique also promises isotopic abundances that trace the origins of the samples.


Trace Imager

Ultra-Compact Trace Organic Chemical & Water/Ice Imager

Landers for Ocean Worlds, mall Discovery/New Frontiers missions to primitive bodies, Dwarf planets, asteroids, planetary moons


Bio-detection

Compact Color Biofinder (CoCoBi) for fast, non-contact detection of bio-markers, biomolecules and polyaromatic hydrocarbons in Ocean Worlds

All “Search of life” NASA rover, lander, and crewed missions with a focus on astrobiology and sample return missions. (Mars, Moon, Europa, Titan, asteroids etc.)


X-Ray Spectrometer

X-Ray µ-Mapping Spectrometer (MapX)

Mars, Ocean Worlds (Europa/Enceladus, Icy planetestimals, Phobos/Deimos, Earth’s Moon.


Surface Spectrometer

A Fiber-Coupled Plasmonic Spectrometer for In Situ Characterization of Solar System Surfaces

Airless body surfaces and subsurfaces


Electron Probe

A Miniature Electron Probe for In Situ Elemental Microanalysis

To develop an active XRS (X- Ray Spectroscopy) instrument for efficient microscale compositional mapping based on an addressable-array carbon nanotube (“CNT”)- based electron source. This work will significantly advance our capability for remote in situ characterization of planetary, asteroidal, and cometary material.

Provide feedback