Target: Mars and Lunar subsurface.

Science:
- Detection and characterization of Mars hydrate minerals (e.g., gypsum, kieserite, epsomite) and ice at local scale down to 5m depth combined with subsurface stratigraphy.
- Detection and characterization of Lunar water-ice/hydroxyl group.
- Selection of sampling sites for biosignatures through detection of Martian evaporitic sulfates, a promising target for exobiology on Mars. Such evaporates would contain permineralized microfossils, if life ever arose on Mars.
- Detection of bulk hydrate minerals and water-ice for future in situ resource utilization.

Objectives:
- Development of a prototype RDS. Major development effort will be on an efficient antenna-sensor structure (current TRL2 to TRL4) and miniature electronics for RDS.
- Integration of the RDS with a heritage miniaturized ground penetrating radar (GPR, TRL4).
- Functional integration and interpretation of data between GPR and RDS. Software development for signal processing and integration of RDS/GPR data.

CoIs: David Paige/UCLA; Yahya Rahmat-Samii/UCLA

Key Milestones:

- **Year 1 (6/30/2017-6/30/2018):**
 - Antenna-Sensor Fabrication/Laboratory Testing (JPL) 6/30/2018

- **Year 2 (7/01/2018-6/30/2019):**
 - Antenna-Sensor Optimization (UCLA), 6/30/2019
 - RDS Electronics/Rover Integration/Field Testing (JPL) 6/30/2019

- **Year 3 (7/01/2019-6/30/2020):**
 - RDS/GPR Functional Integration (JPL), 6/30/2020
 - Field Testing at analog sites/Optimization (JPL), 6/30/2020

TRL (2) to (4)