Skip to main content

Publications

Prepared by Dennis P. Stocker, NASA Glenn Research Center
216-433-2166, dennis.p.stocker@nasa.gov

Peer-reviewed publications resulting from the ACME project are listed on subsequent pages by investigation. The Principal Investigators (PIs), Co-Investigators (Co-Is), and lead Russian collaborators are identified below, where those marked with an asterisk are former investigators. The period of ISS operations is also shown, where initial ACME operations began in Sept. 2017 with the general set-up and that required for the first round of tests for the CLD Flame experiment.

Publications including ISS results are outlined, where that includes papers with results from the CLD Flame precursor, Structure & Liftoff In Combustion Experiment (SLICE), which operated in the Microgravity Science Glovebox (MSG) in Jan.-March 2012.

Burning Rate Emulator (BRE)

    • PI: James G. Quinitiere (U. Maryland)
    • Co-Is: Peter B. Sunderland, John L. de Ris
    • Lead Russian collaborator: Alexander Y. Snegirev
    • ISS operations: Jan.-April 2019, July 2020–Jan. 2021
Includes ISS results
1. Dehghani, P., & Quintiere, J. G. (2021). Theoretical analysis and predictions of burning in microgravity using a burning emulator. Combustion and Flame, 233, 111572.  https://doi.org/10.1016/j.combustflame.2021.111572

2. Dehghani, P., Sunderland, P. B., Quintiere, J. G., & DeRis, J. L. (2021). Burning in microgravity: Experimental results and analysis. Combustion and Flame, 228, 315-330.  https://doi.org/10.1016/j.combustflame.2021.01.035

3. Snegirev, A., Kuznetsov, E., Markus, E., Dehghani, P., & Sunderland, P. (2021). Transient dynamics of radiative extinction in low-momentum microgravity diffusion flames. Proceedings of the Combustion Institute, 38(3), 4815-4823.  https://doi.org/10.1016/j.proci.2020.06.110

4. Auth, E., Quintiere, J. G., & Sunderland, P. B. (2020). Emulation of condensed fuel flames with gaseous fuels supplied through a porous copper calorimeter. Fire and Materials, 44(7), 935-942.  https://doi.org/10.1002/fam.2896

5. Kuznetsov, E. A., Snegirev, A. Y., & Markus, E. S. (2020). Radiative Extinction of Laminar Diffusion Flame above the Flat Porous Burner in Microgravity: A Computational Study. Combustion, Explosion, and Shock Waves, 56(4), 394-411.  https://doi.org/10.1134/S0010508220040036

6. Markan, A., Baum, H. R., Sunderland, P. B., Quintiere, J. G., & de Ris, J. L. (2020). Transient ellipsoidal combustion model for a porous burner in microgravity. Combustion and Flame, 212, 93-106.  https://doi.org/10.1016/j.combustflame.2019.09.030

7. Markan, A., Sunderland, P. B., Quintiere, J. G., de Ris, J. L., & Baum, H. R. (2019). Measuring heat flux to a porous burner in microgravity. Proceedings of the Combustion Institute, 37(3), 4137-4144.  https://doi.org/10.1016/j.proci.2018.05.006

8. Plathner, F. V., Quintiere, J. G., & van Hees, P. (2019). Analysis of extinction and sustained ignition. Fire safety journal, 105, 51-61.  https://doi.org/10.1016/j.firesaf.2019.02.003

9. Markan, A., Sunderland, P. B., Quintiere, J. G., de Ris, J. L., Stocker, D. P., & Baum, H. R. (2018). A burning rate emulator (BRE) for study of condensed fuel burning in microgravity. Combustion and Flame, 192, 272-282.  https://doi.org/10.1016/j.combustflame.2018.01.044

10. 8 Lundström, F. V., Sunderland, P. B., Quintiere, J. G., van Hees, P., & de Ris, J. L. (2017). Study of ignition and extinction of small-scale fires in experiments with an emulating gas burner. Fire Safety Journal, 87, 18-24.  https://doi.org/10.1016/j.firesaf.2016.11.003

11. Zhang, Y., Kim, M., Sunderland, P. B., Quintiere, J. G., & De Ris, J. (2016). A burner to emulate condensed phase fuels. Experimental Thermal and Fluid Science, 73, 87-93.  https://doi.org/10.1016/j.expthermflusci.2015.09.025

12. Zhang, Y., Kim, M., Guo, H., Sunderland, P. B., Quintiere, J. G., deRis, J., & Stocker, D. P. (2015). Emulation of condensed fuel flames with gases in microgravity. Combustion and Flame, 162(10), 3449-3455.  https://doi.org/10.1016/j.combustflame.2015.05.005

13. Zhang, Y., Bustamante, M. J., Gollner, M. J., Sunderland, P. B., & Quintiere, J. G. (2014). Burning on flat wicks at various orientations. Journal of fire sciences, 32(1), 52-71.  https://doi.org/10.1177%2F0734904113495650

Coflow Laminar Diffusion Flame (CLD Flame)

1. Kempema, N. J., Dobbins, R. R., Long, M. B., & Smooke, M. D. (2021). Constrained-temperature solutions of coflow laminar diffusion flames. Proceedings of the Combustion Institute, 38(2), 1905-1912.  https://doi.org/10.1016/j.proci.2020.06.034

2. Cao, S., Ma, B., Giassi, D., Bennett, B. A. V., Long, M. B., & Smooke, M. D. (2018). Effects of pressure and fuel dilution on coflow laminar methane–air diffusion flames: A computational and experimental study. Combustion Theory and Modelling, 22(2), 316-337.  https://doi.org/10.1080/13647830.2017.1403051

3. Kempema, N. J., & Long, M. B. (2018). Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames. Optics letters, 43(5), 1103-1106.  https://doi.org/10.1364/OL.43.001103

Includes ISS results
4. Giassi, D., Cao, S., Bennett, B. A. V., Stocker, D. P., Takahashi, F., Smooke, M. D., & Long, M. B. (2016). Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravity. Combustion and Flame, 167, 198-206.  https://doi.org/10.1016/j.combustflame.2016.02.012
5. Giassi, D., & Long, M. B. (2016). Signal-to-noise ratio improvements in laser flow diagnostics using time-resolved image averaging and high dynamic range imaging. Experiments in Fluids, 57(8), 1-10.  https://doi.org/10.1007/s00348-016-2218-5
Includes ISS results
6. Cao, S., Ma, B., Bennett, B. A. V., Giassi, D., Stocker, D. P., Takahashi, F., … & Smooke, M. D. (2015). A computational and experimental study of coflow laminar methane/air diffusion flames: Effects of fuel dilution, inlet velocity, and gravity. Proceedings of the Combustion Institute, 35(1), 897-903.  https://doi.org/10.1016/j.proci.2014.05.138

7. Giassi, D., Liu, B., & Long, M. B. (2015). Use of high dynamic range imaging for quantitative combustion diagnostics. Applied optics, 54(14), 4580-4588.  https://doi.org/10.1364/AO.54.004580

8. Ma, B., Cao, S., Giassi, D., Stocker, D. P., Takahashi, F., Bennett, B. A. V., … & Long, M. B. (2015). An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity. Proceedings of the Combustion Institute, 35(1), 839-846.  https://doi.org/10.1016/j.proci.2014.05.064

9. Ma, B., & Long, M. B. (2014). Combined soot optical characterization using 2-D multi-angle light scattering and spectrally resolved line-of-sight attenuation and its implication on soot color-ratio pyrometry. Applied Physics B, 117(1), 287-303.  https://doi.org/10.1007/s00340-014-5834-x

10. Ma, B., Wang, G., Magnotti, G., Barlow, R. S., & Long, M. B. (2014). Intensity-ratio and color-ratio thin-filament pyrometry: uncertainties and accuracy. Combustion and Flame, 161(4), 908-916.  https://doi.org/10.1016/j.combustflame.2013.10.014

11. Ma, B., & Long, M. B. (2013). Absolute light calibration using S-type thermocouples. Proceedings of the Combustion Institute, 34(2), 3531-3539.  https://doi.org/10.1016/j.proci.2012.05.030

12. Herdman, J. D., Connelly, B. C., Smooke, M. D., Long, M. B., & Miller, J. H. (2011). A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames. Carbon, 49(15), 5298-5311.  https://doi.org/10.1016/j.carbon.2011.07.050

13. Kuhn, P. B., Ma, B., Connelly, B. C., Smooke, M. D., & Long, M. B. (2011). Soot and thin-filament pyrometry using a color digital camera. Proceedings of the Combustion Institute, 33(1), 743-750.  https://doi.org/10.1016/j.proci.2010.05.006

14. Long, M. (2011). Imaging Flames: from Advanced Laser Diagnostics to Snapshots. In Optical Processes In Microparticles And Nanostructures: A Festschrift Dedicated to Richard Kounai Chang on His Retirement from Yale University (pp. 65-79).  https://doi.org/10.1142/9789814295789_0004

15. Connelly, B. C., Bennett, B. A. V., Smooke, M. D., & Long, M. B. (2009). A paradigm shift in the interaction of experiments and computations in combustion research. Proceedings of the Combustion Institute, 32(1), 879-886.  https://doi.org/10.1016/j.proci.2008.05.066

16. Connelly, B. C., Long, M. B., Smooke, M. D., Hall, R. J., & Colket, M. B. (2009). Computational and experimental investigation of the interaction of soot and NO in coflow diffusion flames. Proceedings of the Combustion Institute, 32(1), 777-784.  https://doi.org/10.1016/j.proci.2008.06.182

17. Dworkin, S. B., Cooke, J. A., Bennett, B. A. V., Connelly, B. C., Long, M. B., Smooke, M. D., … & Colket, M. B. (2009). Distributed-memory parallel computation of a forced, time-dependent, sooting, ethylene/air coflow diffusion flame. Combustion Theory and Modelling, 13(5), 795-822.  https://doi.org/10.1080/13647830903159293

18. Dworkin, S. B., Schaffer, A. M., Connelly, B. C., Long, M. B., Smooke, M. D., Puccio, M. A., … & Miller, J. H. (2009). Measurements and calculations of formaldehyde concentrations in a methane/N2/air, non-premixed flame: Implications for heat release rate. Proceedings of the Combustion Institute, 32(1), 1311-1318.  https://doi.org/10.1016/j.proci.2008.05.083

19. Dworkin, S. B., Connelly, B. C., Schaffer, A. M., Bennett, B. A. V., Long, M. B., Smooke, M. D., … & Miller, J. H. (2007). Computational and experimental study of a forced, time-dependent, methane–air coflow diffusion flame. Proceedings of the Combustion Institute, 31(1), 971-978.  https://doi.org/10.1016/j.proci.2006.08.109

Electric-Field Effects on Laminar Diffusion Flames (E-FIELD Flames)

1. Chien, Y. C., Escofet-Martin, D., & Dunn-Rankin, D. (2019). Ion current and carbon monoxide release from an impinging methane/air coflow flame in an electric field. Combustion and Flame, 204, 250-259.  https://doi.org/10.1016/j.combustflame.2019.03.022

2. Tinajero, J., & Dunn-Rankin, D. (2019). Non-premixed axisymmetric flames driven by ion currents. Combustion and Flame, 199, 365-376.  https://doi.org/10.1016/j.combustflame.2018.10.036

3. Chien, Y. C., & Dunn-Rankin, D. (2018). Electric field induced changes of a diffusion flame and heat transfer near an impinging surface. Energies, 11(5), 1235.  https://doi.org/10.3390/en11051235

4. Sauer, V. M., & Dunn-Rankin, D. (2017). Impinging nonpremixed coflow methane–air flames with unity Lewis number. Proceedings of the Combustion Institute, 36(1), 1411-1419.  https://doi.org/10.1016/j.proci.2016.06.193

5. Tinajero, J., Bernard, G., Autef, L., & Dunn-Rankin, D. (2017). Characterizing iv curves for non-premixed methane flames stabilized on different burner configurations. Combustion Science and Technology, 189(10), 1739-1750.  https://doi.org/10.1080/00102202.2017.1331218

6. Chien, Y. C., Escofet-Martin, D., & Dunn-Rankin, D. (2016). CO emission from an impinging non-premixed flame. Combustion and flame, 174, 16-24.  https://doi.org/10.1016/j.combustflame.2016.09.004

7. Karnani, S., & Dunn-Rankin, D. (2015). Detailed characterization of DC electric field effects on small non-premixed flames. Combustion and Flame, 162(7), 2865-2872.  https://doi.org/10.1016/j.combustflame.2015.03.019

8. Weinberg, F. J., Dunn-Rankin, D., Carleton, F. B., Karnani, S., Markides, C., & Zhai, M. (2013). Electrical aspects of flame quenching. Proceedings of the Combustion Institute, 34(2), 3295-3301.  https://doi.org/10.1016/j.proci.2012.07.007

9. Borgatelli, F., & Dunn-Rankin, D. (2012). Behavior of a small diffusion flame as an electrically active component in a high-voltage circuit. Combustion and flame, 159(1), 210-220.  https://doi.org/10.1016/j.combustflame.2011.06.002

10. Yamashita, K., Karnani, S., & Dunn-Rankin, D. (2009). Numerical prediction of ion current from a small methane jet flame. Combustion and Flame, 156(6), 1227-1233.  https://doi.org/10.1016/j.combustflame.2009.02.002

11. Papac, M. J., & Dunn-Rankin, D. (2008). Modelling electric field driven convection in small combustion plasmas and surrounding gases. Combustion Theory and Modelling, 12(1), 23-44.  https://doi.org/10.1080/13647830701383814

12. Weinberg, F., Carleton, F., & Dunn-Rankin, D. (2008). Electric field-controlled mesoscale burners. Combustion and Flame, 152(1-2), 186-193.  https://doi.org/10.1016/j.combustflame.2007.07.007

13. Rickard, M., & Dunn-Rankin, D. (2007). Numerical simulation of a tubular ion-driven wind generator. Journal of Electrostatics, 65(10-11), 646-654.  https://doi.org/10.1016/j.elstat.2007.04.003

14. Dunn‐Rankin, D., & Weinberg, F. J. (2006). Using large electric fields to control transport in microgravity. Annals of the New York Academy of Sciences, 1077(1), 570-584.  https://doi.org/10.1196/annals.1362.037

15. Papac, M. J., & Dunn‐Rankin, D. (2006). Canceling Buoyancy of Gaseous Fuel Flames in a Gravitational Environment Using an Ion‐Driven Wind. Annals of the New York Academy of Sciences, 1077(1), 585-601.  https://doi.org/10.1196/annals.1362.038

16. Rickard, M., Dunn-Rankin, D., Weinberg, F., & Carleton, F. (2006). Maximizing ion-driven gas flows. Journal of Electrostatics, 64(6), 368-376.  https://doi.org/10.1016/j.elstat.2005.09.005

17. Weinberg, F., Carleton, F., Kara, D., Xavier, A., Dunn-Rankin, D., & Rickard, M. (2006). Inducing gas flow and swirl in tubes using ionic wind from corona discharges. Experiments in fluids, 40(2), 231-237.  https://doi.org/10.1007/s00348-005-0062-0

Flame Design (Flame Design)

Includes ISS results

1. Irace, P. H., Lee, H. J., Waddell, K., Tan, L., Stocker, D. P., Sunderland, P. B., & Axelbaum, R. L. (2021). Observations of long duration microgravity spherical diffusion flames aboard the International Space Station. Combustion and Flame, 229, 111373.  https://doi.org/10.1016/j.combustflame.2021.02.019

2. Wang, Z., Sunderland, P. B., & Axelbaum, R. L. (2020). Double blue zones in inverse and normal laminar jet diffusion flames. Combustion and Flame, 211, 253-259.  https://doi.org/10.1016/j.combustflame.2019.09.014

3. Wang, Z., Sunderland, P. B., & Axelbaum, R. L. (2019). Dilution effects on laminar jet diffusion flame lengths. Proceedings of the Combustion Institute, 37(2), 1547-1553.  https://doi.org/10.1016/j.proci.2018.06.085

4. Wu, W., Adeosun, A., & Axelbaum, R. L. (2019). A new method of flame temperature measurement utilizing the acoustic emissions from laser-induced plasmas. Proceedings of the Combustion Institute, 37(2), 1409-1415.  https://doi.org/10.1016/j.proci.2018.07.096

5. Rodenhurst III, M. K., Chao, B. H., Sunderland, P. B., & Axelbaum, R. L. (2018). Structure and extinction of spherical burner-stabilized diffusion flames that are attached to the burner surface. Combustion and Flame, 187, 22-29.  https://doi.org/10.1016/j.combustflame.2017.08.024

6. Gopan, A., Yang, Z., Kumfer, B. M., & Axelbaum, R. L. (2017). Effects of Inert Placement (Z st) on Soot and Radiative Heat Flux in Turbulent Diffusion Flames. Energy & Fuels, 31(7), 7617-7623.  https://doi.org/10.1021/acs.energyfuels.7b01092

7. Wu, W., Yablonsky, G., & Axelbaum, R. L. (2016). Observation of water–gas shift equilibrium in diffusion flames. Combustion and Flame, 173, 57-64.  https://doi.org/10.1016/j.combustflame.2016.07.025

8. Krishnan, S., Kumfer, B. M., Wu, W., Li, J., Nehorai, A., & Axelbaum, R. L. (2015). An approach to thermocouple measurements that reduces uncertainties in high-temperature environments. Energy & Fuels, 29(5), 3446-3455.  https://doi.org/10.1021/acs.energyfuels.5b00071

9. Lecoustre, V. R., Sunderland, P. B., Chao, B. H., & Axelbaum, R. L. (2013). Modeled quenching limits of spherical hydrogen diffusion flames. Proceedings of the Combustion Institute, 34(1), 887-894.  https://doi.org/10.1016/j.proci.2012.07.029

10. Xia, F., & Axelbaum, R. L. (2013). Simplifying the complexity of diffusion flames through interpretation in C/O ratio space. Computers & Mathematics with Applications, 65(10), 1625-1632.  https://doi.org/10.1016/j.camwa.2013.01.008

11. Xia, F., Yablonsky, G. S., & Axelbaum, R. L. (2013). Numerical study of flame structure and soot inception interpreted in carbon-to-oxygen atom ratio space. Proceedings of the Combustion Institute, 34(1), 1085-1091.  https://doi.org/10.1016/j.proci.2012.06.043

12. Yi, F., & Axelbaum, R. L. (2013). Stability of spray combustion for water/alcohols mixtures in oxygen-enriched air. Proceedings of the Combustion Institute, 34(1), 1697-1704.  https://doi.org/10.1016/j.proci.2012.05.088

13. Lecoustre, V. R., Sunderland, P. B., Chao, B. H., & Axelbaum, R. L. (2012). Numerical investigation of spherical diffusion flames at their sooting limits. Combustion and flame, 159(1), 194-199.  https://doi.org/10.1016/j.combustflame.2011.05.022

14. Wang, Q., & Chao, B. H. (2011). Kinetic and radiative extinctions of spherical burner-stabilized diffusion flames. Combustion and flame, 158(8), 1532-1541.  https://doi.org/10.1016/j.combustflame.2010.12.007

15. Lecoustre, V. R., Sunderland, P. B., Chao, B. H., & Axelbaum, R. L. (2010). Extremely weak hydrogen flames. Combustion and flame, 157(11), 2209-2210.  https://doi.org/10.1016/j.combustflame.2010.07.024

16. Skeen, S. A., Yablonsky, G., & Axelbaum, R. L. (2010). Characteristics of non-premixed oxygen-enhanced combustion: II. Flame structure effects on soot precursor kinetics resulting in soot-free flames. Combustion and Flame, 157(9), 1745-1752.  https://doi.org/10.1016/j.combustflame.2010.04.013

17. Skeen, S. A., Yablonsky, G., & Axelbaum, R. L. (2009). Characteristics of non-premixed oxygen-enhanced combustion: I. The presence of appreciable oxygen at the location of maximum temperature. Combustion and Flame, 156(11), 2145-2152.  https://doi.org/10.1016/j.combustflame.2009.07.009

18. Kumfer, B. M., Skeen, S. A., & Axelbaum, R. L. (2008). Soot inception limits in laminar diffusion flames with application to oxy–fuel combustion. Combustion and Flame, 154(3), 546-556.  https://doi.org/10.1016/j.combustflame.2008.03.008

19. Santa, K. J., Chao, B. H., Sunderland, P. B., Urban, D. L., Stocker, D. P., & Axelbaum, R. L. (2007). Radiative extinction of gaseous spherical diffusion flames in microgravity. Combustion and Flame, 151(4), 665-675.  https://doi.org/10.1016/j.combustflame.2007.08.009

20. Santa, K. J., Sun, Z., Chao, B. H., Sunderland, P. B., Axelbaum, R. L., Urban, D. L., & Stocker, D. P. (2007). Numerical and experimental observations of spherical diffusion flames. Combustion theory and modelling, 11(4), 639-652.  https://doi.org/10.1080/13647830601161567

21. Kumfer, B. M., Skeen, S. A., Chen, R., & Axelbaum, R. L. (2006). Measurement and analysis of soot inception limits of oxygen-enriched coflow flames. Combustion and flame, 147(3), 233-242.  https://doi.org/10.1016/j.combustflame.2006.08.004

22. Chen, R., & Axelbaum, R. L. (2005). Scalar dissipation rate at extinction and the effects of oxygen-enriched combustion. Combustion and Flame, 142(1-2), 62-71.  https://doi.org/10.1016/j.combustflame.2005.02.008

23. Liu, S., Chao, B. H., & Axelbaum, R. L. (2005). A theoretical study on soot inception in spherical burner-stabilized diffusion flames. Combustion and flame, 140(1-2), 1-23.  https://doi.org/10.1016/j.combustflame.2004.08.016

24. Sunderland, P. B., Urban, D. L., Stocker, D. P., Chao, B. H., & AXELBAUM∗, R. L. (2004). Sooting limits of microgravity spherical diffusion flames in oxygen-enriched air and diluted fuel. Combustion science and technology, 176(12), 2143-2164.  https://doi.org/10.1080/00102200490514994

25. 1Sunderland, P. B., Axelbaum, R. L., Urban, D. L., Chao, B. H., & Liu, S. (2003). Effects of structure and hydrodynamics on the sooting behavior of spherical microgravity diffusion flames. Combustion and Flame, 132(1-2), 25-33.  https://doi.org/10.1016/S0010-2180(02)00424-8

26. Chao, B. H., & Axelbaum, R. L. (2000). On by-product flames with implications towards emission of organics during waste incineration. Combustion science and technology, 160(1), 191-220.  https://doi.org/10.1080/00102200008935802

27. Chao, B. H., Liu, S., & Axelbaum, R. L. (1998). On soot inception in nonpremixed flames and the effects of flame structure. Combustion science and technology, 138(1-6), 105-135.  https://www.tandfonline.com/doi/abs/10.1080/00102209808952065

1 Recipient of Best-Paper Award from Northern Ohio section of AIAA, 2003.

Structure and Response of Spherical Diffusion Flames (s-Flame)

1. Liang, W., & Law, C. K. (2019). On radical-induced ignition in combustion systems. Annual review of chemical and biomolecular engineering, 10, 199-217.  https://doi.org/10.1146/annurev-chembioeng-060718-030141

2. Novoselov, A. G., Law, C. K., & Mueller, M. E. (2019). Direct Numerical Simulation of turbulent nonpremixed “cool” flames: Applicability of flamelet models. Proceedings of the Combustion Institute, 37(2), 2143-2150.  https://doi.org/10.1016/j.proci.2018.06.191

3. Xiong, G., Gandhi, R., Zhong, X., Mädler, L., & Stephen, D. T. (2019). Binary collision of a burning droplet and a non-burning droplet of xylene: Outcome regimes and flame dynamics. Proceedings of the Combustion Institute, 37(3), 3345-3352.  https://doi.org/10.1016/j.proci.2018.06.198

4. Liang, W., & Law, C. K. (2018). Theory of first-stage ignition delay in hydrocarbon NTC chemistry. Combustion and Flame, 188, 162-169.  https://doi.org/10.1016/j.combustflame.2017.10.003

5. Liang, W., & Law, C. K. (2017). Extended flammability limits of n-heptane/air mixtures with cool flames. Combustion and Flame, 185, 75-81.  https://doi.org/10.1016/j.combustflame.2017.06.015

6. Yang, S., Zhu, D., & Law, C. K. (2016). On colliding spherical flames: Morphology, corner dynamics, and flame-generated vorticity. Combustion and Flame, 167, 444-451.  https://doi.org/10.1016/j.combustflame.2015.10.029

7. Zhao, P., Liang, W., Deng, S., & Law, C. K. (2016). Initiation and propagation of laminar premixed cool flames. Fuel, 166, 477-487.  https://doi.org/10.1016/j.fuel.2015.11.025

8. Wu, F., Jomaas, G., & Law, C. K. (2013). An experimental investigation on self-acceleration of cellular spherical flames. Proceedings of the Combustion Institute, 34(1), 937-945.  https://doi.org/10.1016/j.proci.2012.05.068

9. Law, C. K. (2012). Fuel options for next-generation chemical propulsion. AIAA Journal, 50(1), 19-36.  https://arc.aiaa.org/doi/pdf/10.2514/1.J051328

10. Xin, Y., Sung, C. J., & Law, C. K. (2012). A mechanistic evaluation of Soret diffusion in heptane/air flames. Combustion and flame, 159(7), 2345-2351.  https://doi.org/10.1016/j.combustflame.2012.03.005

11. Yoo, S. W., Chaudhuri, S., Sacksteder, K. R., Zhang, P., Zhu, D., & Law, C. K. (2012). Response of spherical diffusion flames subjected to rotation: Microgravity experimentation and computational simulation. Combustion and flame, 159(2), 665-672.  https://doi.org/10.1016/j.combustflame.2011.07.013

12. Akkerman, V. Y., Law, C. K., & Bychkov, V. (2011). Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering. Physical Review E, 83(2), 026305.  https://doi.org/10.1103/PhysRevE.83.026305

13. Yang, F., Law, C. K., Sung, C. J., & Zhang, H. Q. (2010). A mechanistic study of Soret diffusion in hydrogen–air flames. Combustion and Flame, 157(1), 192-200.  https://doi.org/10.1016/j.combustflame.2009.09.018

14. Wang, H. Y., & Law, C. K. (2007). On intrinsic oscillation in radiation-affected diffusion flames. Proceedings of the Combustion Institute, 31(1), 979-987.  https://doi.org/10.1016/j.proci.2006.07.183

15. Yoo, S. W., & Law, C. K. (2007). Effects of variable density on response of spherical diffusion flames under rotation. International journal of heat and mass transfer, 50(15-16), 2924-2935.  https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.014

16. Yoo, S. W., Zhu, D., & Law, C. K. (2006). Porous spherical burner for combustion experimentation. Review of scientific instruments, 77(7), 075102.  https://doi.org/10.1063/1.2212399

17. Yoo, S. W., Qian, J., Bechtold, J. K., & Law, C. K. (2005). Response of spherical diffusion flames under rotation with general Lewis numbers. Combustion Theory and Modelling, 9(2), 199-217.  https://doi.org/10.1080/13647830500098423

18. Christiansen, E. W., Stephen, D. T., & Law, C. K. (2003). A computational study of oscillatory extinction of spherical diffusion flames. Combustion and Flame, 134(4), 327-337.  https://doi.org/10.1016/S0010-2180(03)00112-3

19. Law, C. K., Sung, C. J., Wang, H., & Lu, T. F. (2003). Development of comprehensive detailed and reduced reaction mechanisms for combustion modeling. AIAA journal, 41(9), 1629-1646.  https://doi.org/10.2514/2.7289

20. Yoo, S. W., Christiansen, E. W., & Law, C. K. (2002). Oscillatory extinction of spherical diffusion flames: Micro-buoyancy experiment and computation. Proceedings of the Combustion Institute, 29(1), 29-36.  https://doi.org/10.1016/S1540-7489(02)80008-6

21. Yoo, S. W., Law, C. K., & Tse, S. D. (2002). Chemiluminescent OH* and CH* flame structure and aerodynamic scaling of weakly buoyant, nearly spherical diffusion flames. Proceedings of the Combustion Institute, 29(2), 1663-1670.  https://doi.org/10.1016/S1540-7489(02)80204-8

22. Stephen, D. T., Zhu, D., Sung, C. J., Ju, Y., & Law, C. K. (2001). Microgravity burner-generated spherical diffusion flames: experiment and computation. Combustion and Flame, 125(4), 1265-1278.  https://doi.org/10.1016/S0010-2180(01)00247-4

23. Law, C. K., & Sung, C. J. (2000). Structure, aerodynamics, and geometry of premixed flamelets. Progress in energy and combustion science, 26(4-6), 459-505.  https://doi.org/10.1016/S0360-1285(00)00018-6

24. He, L., Stephen, D. T., & Law, C. K. (1998, January). Role of flamefront motion and criterion for global quasi-steadiness in droplet burning. In Symposium (International) on Combustion (Vol. 27, No. 2, pp. 1943-1950). Elsevier.  https://doi.org/10.1016/S0082-0784(98)80038-6

25. Sung, C. J., Zhu, D. L., & Law, C. K. (1998, January). On micro-buoyancy spherical diffusion flames and a double luminous zone structure of the hydrogen/methane flame. In Symposium (International) on Combustion (Vol. 27, No. 2, pp. 2559-2566). Elsevier.  https://doi.org/10.1016/S0082-0784(98)80108-2

26. Qian, J., Bechtold, J. K., & Law, C. K. (1997). On the response of spherical premixed flames under rotation. Combustion and flame, 110(1-2), 78-91.  https://doi.org/10.1016/S0010-2180(97)00051-5

27. Qian, J., & Law, C. K. (1997). On the spreading of unsteady cylindrical diffusion flames. Combustion and flame, 110(1-2), 152-162.  https://doi.org/10.1016/S0010-2180(97)00069-2

28. Sung, C. J., & Law, C. K. (1996, January). Extinction mechanisms of near-limit premixed flames and extended limits of flammability. In Symposium (International) on Combustion (Vol. 26, No. 1, pp. 865-873). Elsevier.  https://doi.org/10.1016/S0082-0784(96)80296-7

29. Eng, J. A., Zhu, D. L., & Law, C. K. (1995). On the structure, stabilization, and dual response of flat-burner flames. Combustion and flame, 100(4), 645-652.  https://doi.org/10.1016/0010-2180(94)00102-X

30. Eng, J. A., Law, C. K., & Zhu, D. L. (1994, January). On burner-stabilized cylindrical premixed flames in microgravity. In Symposium (International) on Combustion (Vol. 25, No. 1, pp. 1711-1718). Elsevier.  https://doi.org/10.1016/S0082-0784(06)80819-2

31. Law, C. K., & Faeth, G. M. (1994). Opportunities and challenges of combustion in microgravity. Progress in Energy and Combustion Science, 20(1), 65-113.  https://doi.org/10.1016/0360-1285(94)90006-X


Provide feedback