

A Theory for Transmutations Resulting from Deuterium Gas Cycling of PdAg Alloy

ICCF-24: Solid State Energy Summit July 28, 2022

Theresa L. Benyo¹: Principal Investigator, Lattice Confinement Fusion Project Wayne Jennings², Lawrence Forsley³, Bruce Steinetz¹, Gus Fralick¹, Robert Hendricks¹

¹NASA Glenn Research Center, Cleveland, OH
 ²HX5, LLC, Cleveland, OH
 ³Global Energy Corporation, Annandale, VA

Outline of Talk

- Gas Cycling Experiment Description
 - Johnson-Matthey (JM) hydrogen purifier
 - Hydrogen purification accomplished by gas diffusion across Pd/Ag tube
 - Observed anomalous behavior when cycling deuterium with Pd/Ag tube
- Material Analysis Completed
 - Bulk Analysis
 - Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)
 - Surface Analysis
 - Scanning Electron Microscope Electron Dispersive Spectroscopy (SEM/EDS)
 - Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS)
- Transmutation Theory
 - Electron Screened Fusion
 - Possible Fission Pairs
- Summary

J-M Gas Cycling Experiments: Description

High flux of D through Pd/Ag hydride system:

- Test Article: Johnson-Matthey (JM) hydrogen purifier
- Inspired by electrolytic wet cell experiments and LENR claims, Gustave Fralick (1989) used JM purifier to load Pd with D₂
 - Easier than loading D₂ during a wet cell experiment
 - Very little neutrons above background observed
 - Observed temp rise of 17 °C in 15 sec unloading D₂ but not with H₂
- Experiments in 2014 & 2018: pressurized cycling of D₂ gas produces heat & surface transmutations on PdAg tubing; evidence of LENR^{1,2}

Repeat of temperature rise during D₂ gas unloading

- 1989: 17°C temp rise in 15 s
- 2009: 5°C temp rise
- 2012: 25 °C temp rise
- 2014: 25°C temp rise in 4 s
- 2018: 12 °C temp rise in 45 s

¹G. Fralick, et al, "Transmutations observed from pressure cycling palladium silver metals with deuterium gas", International Journal of Hydrogen Energy, vol. 45, no. 56, pp. 32320-32330, 2020.
²B. Liu, et al, "Nuclear transmutation on a thin Pd film in a gas-loading D/Pd system," J. of Condensed Matter Nuclear Science, 13, pp. 311–318, 2014.

Photo of 1989 experimental setup showing the JM Purifier (center) with 2 SNOOPY neutron detectors (one on either side of the purifier).

National Aeronautics and Space Administration

J-M Gas Cycling Experiments: Bulk Analysis

- Inductively Coupled Plasma Atomic Emission Spectroscopy
 - Elemental bulk analysis of PdAg tubing
 - Elevated levels of Cr, Cu, Fe, Mn and Zn detected in exposed PdAg tubing

Element	Pd25Ag B	Units		
	Control/Unexposed	Exposed	Δ	
Ag	25.0	24.9	-0.1	wt%
Pd	75.0	75.1	+0.1	wt%
Al	30	30	0	ppm
Cr	Not detected	2	+2	ppm
Cu	20	140	+120	ppm
Fe	20	40	+20	ppm
Mg	1	1	0	ppm
Mn	Not detected	0.5	+0.5	ppm
Na	2	2	0	ppm
Pt	105	105	105 0	
Si	40	30	-10	ppm
Zn	Not detected	285	+285	ppm

J-M Gas Cycling Experiments: Surface Analysis

Ag L series

- Scanning Electron Microscope/Energy Dispersive Spectroscopy (SEM/EDS)
 - Areas of Cu, Fe, Ti, Cr, Ca, Mn, Na, Si, Al and Zn detected
 - Showed areas of molten looking spots and craters

25µm

10µm

Pd L series

J-M Gas Cycling Experiments: Surface Analysis Comparison

	Elemen	t Line Ty	/pe Wt ^e	% Wt%	6σ
	Pd	L serie	es 72.4	47 0.0)4
	Ag	L serie	es 26.3	31 0.0	03
	0	K seri	es 1.0	6 0.0	03
	Si	K seri	es 0.0	8 0.0	
	Fe	K seri	es 0.0	4 0.0	
	AI	K seri	es 0.0	4 0.0	01
Total:			100.	00	13. 化作品、国
		100	μn		
1	Element	Line Type	Wt%	Wt% σ	
	Pd	L series	62.95	0.14	
	Ag	L series	17.32	0.12	
	Zn	K series	11.20	0.07	
	0	K series	3.44	0.12	
	Cu	K series	3.10	0.04	A PAR P P
	Fe	K series	1.34	0.03	E Park 111
	Ni	K series	0.53	0.03	a 16 11 1-1 1/4
	Cr	K series	0.13	0.02	
	Total:		100.00		ONS NO CI-
				O	

- Unexposed PdAg tube: mostly Pd, Ag with trace of Fe, Si, & Al.
- Exposed PdAg tube: Fe, Cr & Cu spots with overall spread of Zn
- Created a 'trench' with Ga ions to identify area for ToF-SIMS analysis

ToF SIM Spectroscopy: Isotopic Surface Analysis

Isotopic distribution of Pd and Ag

Note: TOF-SIMS is qualitative though very sensitive.

ToF SIM Spectroscopy: Isotopic Surface Analysis

National Aeronautics and Space Administration

Transmutation Theory: Electron Screening

- Electron screening results in a *more transparent Coulomb Barrier, shifting the Gamow Factor,* as if deuterons were at far higher energies.
- This exponentially increases fusion rates.
- Laboratory astrophysics using accelerated deuteron beams across the Periodic Table show lattice and plasma screening provide up to 3+ keV screening.
- From LCF Theory development³, a higher probability of large angle scattering of screened charged particles results on screened deuterons.

Electron Screened Enhanced Cross Sections

However, screening is only effective below 10 keV.

$$\sigma_{\text{bare}}(E) = \frac{S(E)}{E} \exp\left[-G(E)\right]$$

³V. Pines, et al, "Nuclear fusion reactions in deuterated materials," Phys Rev C, 101, 044609, 2020.

Transmutation Theory: Electron Screened d-Ag or d-Pd Fusion

- Dolan and Zuppero¹
 - Heavy electrons and 3-body interactions
- Pines & Pines (NASA GRC work)
 - Electron screening theory (described in previous slide)
- Possible for deuteron to be completely 'consumed' by either Pd or Ag with enough electron screening to overcome the Coulomb barrier
- d-Pd and d-Ag reactions that follow conservation laws:
 - ¹⁰⁶Pd + ²D -> ¹⁰⁸Ag* (Q=10.83 MeV)
 - ¹⁰⁸Pd + ²D -> ¹¹⁰Ag* (Q=11.08 MeV)
 - ¹⁰⁵Pd + ²D -> ^{107m}Ag (Q=13.13 MeV)
 - ¹⁰⁴Pd + ²D -> ¹⁰⁶Ag* (Q=10.86 MeV)
 - ¹⁰⁷Ag + ²D -> ¹⁰⁹Cd* (Q=13.24 MeV)
 - ¹⁰⁹Ag + ²D -> ¹¹¹Cd* (Q=13.67 MeV)

¹https://www.lenr-canr.org/acrobat/DolanTJheavyelect.pdf

cloud

(E)

screening

Transmutation Theory: Fissioning of the Resulting Unstable Isotopes

- Takahasi: Photofissioning of Pd⁴
 - Pairs such as Fe+Ca and Ti+Cr
 - Nuclear excitation by low-energy, high-flux photons
 - Electrolysis experiments
- Fissioning of fused d-Pd or d-Ag; unstable Ag or Cd
 - Many pairs are possible with one of the pairs undergoing beta decay often many times to a stable isotope
 - These isotope pairs have been observed on post-test PdAg alloy samples as well as others.
 - Fe+Ti; Mn+Cr; Fe+Cr

⁴A. Takahasi, M. Ohta, and T. Mizuno, "Production of stable isotopes by selective channel photofission of Pd," Jpn. J. Appl. Phys. 40, pp. 7031-7046, 2001.

Transmutation Theory: Fission Parameter

- Non-actinide palladium deuteride (Z=46) has a fission threshold⁵ < 10 MeV despite expected 50 MeV fission barrier height
- The electrostatic Coulomb to strong force "fissility" relationship⁶ (which was initially derived for characterizing spontaneous fission), Z²/A>17, holds as low a Z as strontium (⁸⁴Sr₃₈, Z=38, Z²/A=17.2)
- However, parameter was based upon the "liquid drop" nuclear model developed for actinides.
- Fissility relationship Z²/A>17; for ¹⁰⁵Pd₄₆ = 20.15 and for ¹⁰⁷Ag₄₇ = 20.65, hence are both potentially fissile.

⁵R. Wisniewski, et al., "Deuteron Disintegration, Thermonuclear and Nuclear Fission Reactions Induced by γ Quanta in D-Saturated Palladium and Dense Deuterium Gas with Synthesis of New Structures", Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 7 (2) (2013) 239–247.

⁶K.N. Mukhin, "Experimental Nuclear Physics: Volume I, Physics of Atomic Nucleus", Mir Publishers, (Moscow) (1987) 467. Translated from the 1983 Russian version.

Transmutation Theory: How Do We Fission Pd?

- Actinides: Traditional Fission
 - Thermal neutron fission for odd A nuclei (²³⁵U, ²³⁹Pu) and fast neutron fission for even and odd A nuclei (²³⁵U, ²³⁹Pu, ²³²Th, ²³⁸U)
- PdD system
 - Fission is possible via absorption of a nucleon
 - Neutron absorption result in release of ~8 MeV of binding energy is shared as KE amongst nucleons
 - O-P reaction: ${}^{a}M_{z}(D,p)n+{}^{a+1}M_{z}$; KE of p > 6MeV
 - Certain fusion reactions generate 14MeV neutrons and 15MeV protons
 - Pd fission barrier is near the top, requiring ~40-50 MeV to fission
 - However, ¹⁰⁵Pd has oblate nucleus with *Jp=5/2+*
 - Gamma excitation enables sub-threshold fission

Inert Gas as Insight to Pd Fission Paths Neon or Krypton Unstable with too <u>Many</u> neutrons

Beta Decays are all milli-sec to at most hours with very few showing gamma radiation (nature hides her tracks)

Materials: SEM/EDS saw Na, Mg, Al, Si, + Sr others in J-M Tube bundle;

Transmutation Theory: Fissioning of Unstable Isotope Ag

- ⁶⁴Zn and ⁴⁴Ca
 - ¹⁰⁶Pd + ²D -> ¹⁰⁸Ag* -> ⁶⁴Zn + ⁴⁴Cl
 - ⁴⁴Cl beta decays to stable ⁴⁴Ca
- ⁶⁵Cu and ⁴³Ca
 - ¹⁰⁶Pd + ²D -> ¹⁰⁸Ag* -> ⁶⁵Cu + ⁴³Ar
 - ⁴³Ar beta decays to stable ⁴³Ca
- ⁵²Cr and ⁵⁸Ni (observed in ToF-SIMS data)
 - ¹⁰⁸Pd + ²D -> ¹¹⁰Ag* -> ⁵²K + ⁵⁶Ni
 - ⁵²K beta decays to ⁵²Ca -> ⁵²Sc -> ⁵²Ti -> ⁵²V and then to stable ⁵²Cr
- ⁵²Cr and ⁵⁶Fe (observed in ToF-SIMS data)
 - ¹⁰⁶Pd + ²D -> ¹⁰⁸Ag* -> ⁵²Cr + ⁵⁶V
 - ⁵⁶V beta decays to stable ⁵⁶Fe

and NASA

Transmutation Theory: Fissioning of Unstable Isotope Cd

- ⁴⁹Ti and ⁶⁰Fe
 - ¹⁰⁷Ag + ²D -> ¹⁰⁹Cd* -> ⁶⁰Fe + ⁴⁹Ti
 - ⁶⁰Fe has a 2.62E6 year ½ life
- ⁵⁴Cr and ⁵⁷Fe (observed in ToF-SIMS data; 2 pathways possible)
 - ¹⁰⁹Ag + ²D -> ¹¹¹Cd* -> ⁵⁴Cr + ⁵⁷Cr
 - ⁵⁷Cr beta decays (½ life of 21.1 s) to ⁵⁷Mn (½ life of 85 s) and then stable ⁵⁷Fe
 - ¹⁰⁹Ag + ²D -> ¹¹¹Cd* -> ⁵⁴Ti + ⁵⁷Fe
 - ⁵⁴Ti beta decays (½ life of 2.1 s) to ⁵⁴V (½ life of 49 s) and then stable ⁵⁴Cr
- ⁵³Cr and ⁵⁸Fe (2 pathways possible)
 - ¹⁰⁹Ag + ²D -> ¹¹¹Cd* -> ⁵³Cr + ⁵⁸Cr
 - ⁵⁸Cr beta decays (½ life of 7 s) to ⁵⁸Mn (½ life of 3 s) and then stable ⁵⁸Fe
 - ¹⁰⁹Ag + ²D -> ¹¹¹Cd* -> ⁵³Ti + ⁵⁸Fe
 - ⁵³Ti beta decays (½ life of 33 s) to ⁵³V (½ life of 1.5 min) and then stable ⁵³Cr

Summary

- Transmutations observed with deuterium gas cycling of PdAg alloy with various material analysis techniques
- Electron screening greatly reduces Coulomb barrier facilitating deuteron/proton capture of Pd or Ag isotope
- Capture causes resulting isotope to be unstable
 - Unstable enough to cause fissioning?
 - Possibly another yet unknown vehicle assists with fissioning of the unstable isotope
- Many fission pair possibilities exist
- Additional experiments are needed to confirm the working fusion/fission theory

Backup

J-M Gas Cycling Experiments: Surface Analysis

- Scanning Electron Microscope/Energy Dispersive Spectroscopy (SEM/EDS)
 - Areas of Cu, Fe, Ti, Na, Si, Al and Zn detected
 - Showed areas of molten looking spots and craters

Pd melts at 1560 °C and Ag melts at 962 °C yet system heater was kept under 425 °C

J-M Gas Cycling Experiments: Surface Analysis

• SEM/EDS Results

- Areas of Mn, Cr, Fe, and Ca detected
- Molten-like crater with areas of Cr, Mn, and Ca in the center with Fe surrounding

keV 20

Additional area with transmutations (2018)

National Aeronautics and Space Administration

Ga - 68.91 (512x512) Cts: 2519497; Max: 137; Scale: 100µm

ToF SIM Spectroscopy: Isotopic Surface Analysis

National Aeronautics and Space Administration

