Prioritized Technology:
Technologies to Sample Plumes of Ocean Worlds from Orbit/Flyby

Technical Goal
- Collect >10 μL (scalable) sample of 1-10 μm ice particles from Enceladus plume travelling up from the moon at up to 600 m/s.
- Collect >10 μL sample of 1-10 μm ice particles from Europa plume travelling up from the moon at up to 300 m/s.
- Process ice particles into designed state for life detection measurements (melt, vaporize, dilute, desalinate, etc.) and transfer to instruments.

Mission Applications
- Plumes erupting from the surface of Europa and Enceladus are thought to originate in their sub-surface oceans. Similar plumes were seen by Voyager as it flew past Triton, another candidate Ocean World. Retrieving material from the plumes would be a relatively simple way to access material from the sub-surface oceans and to assess their habitability/inhabitance.
- Key challenge is that density of plumes are fairly low – limiting sample size collected on a single flyby.

Technical Status

Sampling/Analysis Systems:
- **Cone/Funnel Ice Collector:**
 - Plume Sampling System for Enceladus;
- **Impact Ionization:**
 - Cassini Cosmic Dust Analyzer
 - Europa Clipper SUDA
- **Neutral Gases and Positive Ions:**
 - Cassini INMS samples Enceladus plume – not optimized for aqueous sample collection
 - Europa Clipper MASPEX (not optimized to sample biogenic materials)
- **Capture Cells/Aerogel Collection:**
 - Stardust – Collected gas and particulates - not optimized for aqueous sample collection or in-situ analysis
 - Enrichment cell exosphere gas collector

Processing and Transfer systems:
- Microfluidic devices similar to those funded via PICASSO/MatISSE/ICEE2/ColdTech Programs

8/27/2020