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Overview
• Innovation

- Hybrid Fusion Fast Fission
- Robotic Probe

• Impact
- Revolutionize Power Generation
- Efficient Use of Waste Heat

• Mission
- Enceladus Ice Plumes
- Enceladus Orbilander Mission

• Approach



Innovation
• Hybrid Fusion Fission Reactor

- Non-fissile, compact, scalable nuclear 
energy source sufficient to power and 
provide heat for melting and boring 
through icy shelves.

• Robotic Probe
- Small, robust, long-lived electrical energy 

and heat source
- Traditional nuclear power systems require 

significant radioactive shielding
- Enriched actinide-based systems: 

significant fabrication, safety, launch costs



Impact

• Probes for icy moons require unacceptable amounts of 238Pu isotope.

• A small, low-mass, variable power source is needed.

• New hybrid approach yields a variable output power source smaller than 
existing fissile reactors.

• Non-fissile alternative to high-enriched uranium (HEU), low-enriched 
uranium (LEU), or high-assay, low-enriched uranium (HALEU) core saves 
uranium enrichment, security and launch safety costs.

• Efficient operation with reactor thermal waste heat allows probe to melt 
and/or vibrate through ice shelf.



Mission

• Ocean Worlds Exploration Program
- Search for Extraterrestrial Life
- Enceladus: icy world candidate
- Challenges

§ Operate under extreme environmental 
conditions

§ Break through up to 40 km thick ice
- Lattice Confinement Fusion (LCF) 

Fast Fission can provide power and 
heat transfer

Enceladus Cutaway

GRC Tunnelbot

JPL Cryobot



Mission

GRC Tunnelbot

JPL Cryobot• Ocean Worlds Exploration Program
- Proposed probe capable of 

powering the probe and 
heating/drilling mechanism with 
sufficient Watt-electric and Watt-
thermal

- Heated and/or (ultra) sonic drilling 
mechanism enables probe to cut 
through ice

- Take advantage of the ice plumes 
evident on the south pole of 
Enceladus



Approach: Requirements

• Evaluate Robotic Probe and Power Requirements
- Studied GRC's Europa Tunnelbot and JPL's Cryobot
- Develop list of requirements

§ Heat source density: > 1W/cc
§ Total thermal power: 8-12 kW
§ Lifetime: 2-6 years; time to reach ocean under ice crust
§ Maturity: needed in 10 years
§ Probe Design; Water jet, drill/auger & heated fins
§ Communication: Fiber optic
§ Ability to return
§ Method to avoid ice reformation after traversing through solid ice



Instrumentation
/Science 
Payload

Shielding

Controls

3D printed Oscillating Heat Pipe (OHP) Heating Cylinder

Robotic Probe Specifications/Options
• No pumps, no vibration -> reliable heating and power



Shield
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Robotic Probe Specifications/Options
• No pumps required for power and heat transfer

- Use Oscillating Heat Pipe (OHP) instead



Approach: MCNP Modeling
• Model Fusion Fast Fission

- Use Monte-Carlo N-Particle (MCNP) to model nuclear fission reactions 
from fusion neutrons

• Model Hybrid Fusion Fast Fission Reactor
- Compare/contrast different molten salt based fusion fission reactors
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Takeaways
• Hybrid Fusion-Fast Fission Power system

- No LEU, HEU, or HALEU necessary
- Built on NASA GRC1 and US Navy research2 published in Phys Rev C and elsewhere
- With scaling, suitable for ice crust penetration and power
- Variable output power possible so probe is throttleable
- Compact system supports small size of the probe

• Recognition of Icy World ice-phase temperature and pressure changes
- Requires power/penetration flexibility
- Possible near-surface ice pools3

• Combined ice melting/ultrasonic penetration
- Takes advantage of skin layer adjacent to probe

1. Pines, et. al., “Nuclear Fusion Reactions in Deuterated Metals”, Phys Rev C., 101, 044609 (2020)
2. Mosier-Boss, et al., “Investigation of Nano-Nuclear Reactions in Condensed Matter”, Defense Threat Reduction Agency,(2016).
3. R. Culbert, et al., “Double ridge formation over shallow water sills on Jupiter’s moon Europa”, Nature Communications, 

13:2007 (2022)
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• Addressing Icy World 
Conditions

- Icy crust likely exist over a 
pressure range from vacuum to 
possibly over 10 kbar

- Temperature range from 
cryogenic to > 270 ºK

- Various ice phases impact probe 
travel rate and pressure

- Sub-surface lakes likely1
- With these conditions, variable 

power output is required

https://commons.wikimedia.org/wiki/File:Phase_diagram_of_water.svg
1 R. Culbert, et al., “Double ridge formation over shallow water sills on Jupiter’s moon Europa”, 
Nature Communications, 13:2007 (2022)

Mission



Robotic Probe Specifications/Options

• Cryobot

• Europa Tunnelbot



• Traditional fusion: Heats plasma 10x hotter than center of sun – hard to control
• LCF addresses the pressure, temperature, and containment challenges with fusion

• Heats very few atoms at a time
• Approaches solar fuel density
• Lattice provides containment

How LCF Works

Lattice of atoms Inside the lattice

Lattice electron screening (i.e., cloud 
of electrons make the D look like a 
neutral particle and no repulsion exists)

Cold D Hot d

n*

(+ trigger)

Part A:
Part B: 
A + B + Trigger =

Electron Screening
(increases fusion probability)

High Fuel Density
(billion times more dense than traditional fusion)

Technical Details Simplified

Viable Fusion

Hot He-3

https://www1.grc.nasa.gov/space/science/lattice-confinement-fusion/



Hybrid Fusion-Fast Fission
• Takes advantage of both processes

- Fusion reactions provide the neutrons to 
fission non-fissile material

- Require ~2MeV neutrons to fission Th and 
natural U

- Fusion reactions can provide up to 14.1 MeV 
neutrons

Fusion
Reaction

MeV Occurrence Useful particle 
energy (MeV)

D(d,n)3He 4.00 primary » 50% n=2.45

D(d,p)T 3.25 primary » 50% p=3.00

D(3He,p)a 18.30 secondary p=15.00

D(t,n)a 17.60 secondary n=14.10

T(t,a)2n 11.30 low probability n=1 to 9

3He(3He,a)2p 12.86 low probability p=1 to 10

Fission
Reaction

MeV Occurrence Useful particle 
energy (MeV)

232Th(n,𝜸)f 200 high probability n=1 to 9

232Th(p,𝜸)f 200 some probability p=1 to 10

238U(n,𝜸)f 200 high probability n=1 to 9

238U(p,𝜸)f 200 some probability p=1 to 10


