Colloidal Superstructures in Space

S. Veen, M. Potenza, G. Wegdam, P. Schall

University of Amsterdam
Università degli Studi di Milano
Science Team

Dr. Sandra Veen (Amsterdam)

Dr. Marco Potenza (Milan)

Prof. Gerard Wegdam (Amsterdam)

Dr. Peter Schall (Amsterdam)
Colloidal Superstructures in Space

- Anisotropic interactions
- T control of interactions
- Superstructures: Formation + Growth
- Direct + reciprocal imaging

Anisotropic Interaction by critical Casimir forces
Colloids - Hard Spheres

\[V(\phi) \]

\[r \]

\[\phi \]

\[\text{fluid} \quad 0.49 \quad \text{fluid + crystal} \quad 0.54 \quad \text{crystal} \]
Colloids - Hard Spheres

\[V(r) \]

\[r \]

\[\phi \]

\[\text{fluid} \quad 0.49 \quad \text{fluid + crystal} \quad 0.54 \quad \text{crystal} \]

Chaikin, Russel et al.
Colloids - Charged Spheres

Science Overview

Leunissen et al. (Nature 2005)
Colloidal Phase behavior - Depletion

Colloid-polymer

Volume fraction U/kT

Gel
attr. glass
HS glass

equilibrium
out of equilibrium
Colloidal Phase behavior - Depletion

Colloid-polymer

\[V(r) \]

\[r \]

\[\frac{U}{kT} \]

Volume fraction

\[G \]

\[G+L \]

\[G+C \]

\[F \]

Gel

attr. glass

HS glass

equilibrium

out of equilibrium

Chaikin, Weitz
Science Overview

Control Interactions - Critical Casimir effect

1. Active Potential Control

2. Anisotropic Interaction
Control Interactions - Critical Casimir effect

Bechinger et al. (Nature 2008)
The Critical Casimir effect

Science Overview

Fraction of 3MP in water

Temperature

2 phases

Colloidal aggregation

Phase Separation Line

1 phase

C_c

3MP + water

water

3MP
Particle interactions

Coulomb repulsion

\[V_{el}(a) \propto \lambda_d^2 e^{-a/\lambda_d} \]

\(\lambda_d \rightarrow \) Salt concentration

+ Casimir attraction

\[V_{\text{casimir}}(a) \propto -\frac{1}{\xi} e^{-a/\xi} \]

\(\xi \rightarrow \) Temperature

\[\frac{U}{kT} \]

Particle interactions

Coulomb repulsion

\[V_{el}(a) \propto \lambda_d^2 e^{-a/\lambda_d} \]

\(\lambda_d \rightarrow \text{Salt concentration} \)

+ Casimir attraction

\[V_{casimir}(a) \propto -\frac{1}{\xi} e^{-a/\xi} \]

\(\xi \rightarrow \text{Temperature} \)

Scientific Merit

Control Anisotropic Interactions

Critical Fluctuation

Hydrophilic
Hydrophobic
Control Anisotropic Interactions

- Living polymer chains (Particles 2)
- Diamond structure (Particles 4)
- Colloidal Micelles Helices (Particles 1)
- Molecules (Particle Mixtures)

D.J. Kraft et al, JACS, 131, (2009) 1182-1186
Need for ISS environment

1. Follow the growth of structures

\[F_g = \Delta \rho g V \]

\[\Delta \rho = \rho_{\text{Colloid}} - \rho_{\text{Solvent}} \]
1. Follow the growth of structures

\[F_g = \Delta \rho g V \]

\[\Delta \rho = \rho_{\text{Colloid}} - \rho_{\text{Solvent}} \]
2. Temperature is control parameter

- Change Temperature $\Delta \rho$ changes
- Temperature \rightarrow Convection disrupts growth
Ground-based work

Microscopy

$\Delta T = 0.9^\circ C$

$1 \mu m$
Ground-based work

Microscopy

$\Delta T = 0.9^\circ C$

$0.5^\circ C$

$1\mu m$
Ground-based work

Microscopy

Gas $\Delta T = 0.9^\circ C$

Liquid $0.5^\circ C$

Crystal $0.2^\circ C$

$1\mu m$
Ground-based work

Microscopy

Gas \(\Delta T = 0.9^\circ C \)

Liquid \(0.5^\circ C \)

Crystal \(0.2^\circ C \)

- 1\(\mu \)m
Microscopy

2 µm
Microscopy

2 µm
Microscopy

2 µm
Ground-based work

Potential measurement

Pair distribution function

Particle distribution

\[G(r) \]

- \(\Delta T = 0.30 \, ^\circ\text{C} \)
- \(\Delta T = 0.35 \, ^\circ\text{C} \)
- \(\Delta T = 0.40 \, ^\circ\text{C} \)
- \(\Delta T = 0.50 \, ^\circ\text{C} \)
- Room temperature
Ground-based work

Potential measurement

Pair distribution function

\[G(r) = \exp\left(-\frac{U(r)}{k_B T}\right) \]

Potential

\[\Delta T = \{1.5K, 0.8K, 0.6K, 0.4K\} \]

\[\Delta T = \{0.3K, 0.35K, 0.4K, 0.5K\} \]
\[U_{\text{total}} = U_{\text{el}} + U_{\text{Casimir}} \]

\[A_{\text{el}} e^{-\left(\frac{r}{\lambda_d}\right)} \quad A_{\text{Cas}} e^{-\left(\frac{r}{\xi}\right)} \]

Ground-based work

Potential measurement

ΔT = 0.3K, 0.6K, 0.8K, 1.5K, 0.4K

ΔT = 0.3K, 0.4K, 0.5K

Room temperature

\[\frac{U(r)}{kT} \]
Ground-based work

Potential measurement

\[U_{\text{total}} = U_{\text{el}} + U_{\text{Casimir}} \]

\[A_{\text{el}} e^{-(r'/\lambda_d)} \quad A_{\text{Cas}} e^{-(r'/\xi)} \]
Van der Waals model

\[(v - b) \left(p + \frac{a}{v^2} \right) = k_B T \]

Excluded volume

\[b = \frac{16}{3} \pi r_0^3 \]

Effect. attraction

\[a = -2\pi \int_{r_1}^{\infty} U(r) r^2 dr \]

Israelachvili, Intermolecular and surface forces
Ground-based work

Van der Waals model

\[(v - b) \left(p + \frac{a}{v^2} \right) = k_B T \]

Excluded volume

\[b = \frac{16}{3} \pi r_0^3 \]

Effect. attraction

\[a = -2\pi \int_{r_1}^{\infty} U(r) r^2 dr \]

Israelachvilli, Intermolecular and surface forces

\[\Delta T = 1.5K \]

\[0.8K \]

\[0.6K \]

\[0.4K \]
Ground-based work

Van der Waals model

\[(v - b) \left(p + \frac{a}{v^2} \right) = k_B T \]

Excluded volume

\[b = \frac{16}{3} \pi r_0^3 \]

Effect. attraction

\[a = -2\pi \int_{\mathfrak{r}}^{\infty} U(r) r^2 \, dr \]

Israelachvili, Intermolecular and surface forces

\[\Delta T = 1.5K \]
\[0.8K \]
\[0.6K \]
\[0.4K \]
Ground-based work

Monte Carlo Simulations

Extrapolate potential

Equilibrium phase diagram

\[U(r) / k_B T \]

\[(T-T_c)/K \]

D. Triet, D. Nguyen, P. Bolhuis and P. Schall, in preparation
Ground-based work

Colloidal Molecules

Single protrusion

Making molecules

D.J. Kraft et al, JACS, 131, (2009) 1182-1186
Ground-based work

Adjusting the surface properties

Add Fluorecein

Creating differences:
- Different monomer (PS/PMMA)
- Charged/uncharged initiator

Current system:
- Charged protrusion
- PolyStyrene/PS particles
- Readily suspendable in water/3MP
- Promising ground-based measurement

Ground-based work

Adjusting the surface properties

Simple calculation
Charge density difference only
Same temperature

R_{seed} = 1.15 \text{ nm}
R_{cap} = 1.45 \text{ nm}
\sigma_{seed} = 10 \times \sigma_{cap}
Proposed Experiment

Temperature control → Attraction on/off → Follow structure formation → “Reaction kinetics“

Vary **Temperature** → Vary attraction strength

Vary **Rate of change** → Eqilibrium vs. out-of equilibrium

Reverse Temperature → Repeat Experiment

Image in real + reciprocal space
Proposed Experiment

Direct imaging + Near Field Scattering

\[d_{sp} \approx R \]

Far Field

\[d_{sp} = \frac{z\lambda}{D} \]

Proposed Experiment

1. Sample Cells
 - Stirrer
 - No bubbles in field of view
 - Quartz cells
 - Max 3 mm thick
2. Temperature control

- 0.5 °C steps, better 0.2°C

- Possible to heat samples individually
3. Camera

- 1024x1280 pixels
- Dynamic range: 12 bit
- Low signal to noise ratio
4. Direct Imaging Mode

- White light illumination on
- Laser off
- Focus in sample
5. Near field scattering Mode

- White light off
- Laser on:
 Beam Collimated
 Coherence length ~ 3mm
- Focus above sample
Proposed Experiment

Raw image at t_i

Raw Image at $t = t_i + \Delta t$

Subtracted Image

Power Spectrum

Azimuthal averaging

$D_i(x, y)$

$S(q_x, q_y) = \left| \text{FFT}[D_i(x, y)] \right|^2$

$I(q)$

Proposed Experiment - Samples

1. Mono Patch

D.J. Kraft et al, JACS, 131, (2009) 1182-1186
Proposed Experiment - Samples

1. Mono Patch

Colloidal Micelles

Helices

vary aspect ratio

200nm

D.J. Kraft et al, JACS, 131, (2009) 1182-1186

Israelachvili, Intermolecular and surface forces
Proposed Experiment - Samples

2. Di-Patch

Colloidal Polymers
Proposed Experiment - Samples

2. Di-Patch

Colloidal Polymers

3. Mixtures Mono Patch + Di-Patch

Molecules Superstructures
Proposed Experiment - Samples

3. Mixtures Tetra Patch + Di-Patch

CH₄, organic molecules

4. Tetra-Patch

Diamond structure
Succes Criteria

- What do we want to see?
 - Temperature-controlled assembly + Imaging
 - Novel structures from anisotropic potential
 - Control structure with attraction strength
 - Follow Dynamics of ‘molecular reactions’
Summary

- Growth of colloidal superstructures
- Direct T control of anisotropic potential
 → New equilibrium + out-of-equilibrium structures
- Real+reciprocal space imaging
- Colloidal Micelles, Helices, Polymer chains, Diamond structure, complex molecules
Collaborators

- Willem Kegel, Daniela Kraft (Utrecht)
- Peter Bolhuis (Simulations, Amsterdam)
- T. Narayanan (ESRF Grenoble)
- D. Nguyen, D. Triet, J. Moons (PhD, Amsterdam)