MISSE Science Experiments

PI: Kim de Groh, NASA GRC
Co-I: Sharon Miller, NASA GRC
Co-I: Ching-cheh Hung, NASA GRC
Co-I: Bruce Banks, Alphaport
Co-I: Debbie Waters, ASRC
PM: Don Jaworske, NASA GRC

Objective:

- To fly material experiments on the exterior of ISS to evaluate the long-duration environmental durability of materials for spacecraft applications

Relevance/Impact:

- Space environment exposure experiments enables:
 - Prediction of material and component lifetimes in space, e.g. MISSE 2 data has had a direct impact on materials design choices for: Operational Land Imager, Global Precipitation Measurement-Microwave Imager, Standard Interface Vehicle & WorldView-2
 - Development of predictive tools, e.g. atomic oxygen erosion yield for polymers
 - Correlation factors between space-exposure & ground-facilities, enabling more accurate in-space performance predictions based on ground-testing, e.g. MISSE data directly impacted EVA decision for Hubble Space Telescope (HST) 5th servicing mission
 - Provides long-duration environmental data to the space community, e.g. 30+ requests for MISSE 2 PEACE data: ARC, GSFC, JSC, Aerospace Corp., AFRL, Ball Aerospace, Boeing, DARPA, Lockheed Martin, SpaceX, United Solar Ovonic LLC., etc.
 - MISSE Science experiments progress the SOA in durability understanding

Development Approach:

- Conduct post-flight analyses of Glenn’s MISSE 1-8 fundamental science experiments
- Publish MISSE based Handbook under the NASA Tech Standards Program
- Develop and publish an Atomic Oxygen Erosion Yield Predictive Tool
- Add MISSE data to environmental durability databases
- Student collaboration

Project Life Cycle Schedule

<table>
<thead>
<tr>
<th>Milestones</th>
<th>MISSE Science Experiments</th>
<th>SCR</th>
<th>RDR</th>
<th>PDR</th>
<th>CDR</th>
<th>VRR</th>
<th>Fit Safety</th>
<th>FHA</th>
<th>Launch</th>
<th>Return</th>
<th>Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISSE 8</td>
<td>1 (40 samples)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>11/2010+</td>
<td>TBD</td>
<td>2013</td>
</tr>
<tr>
<td>MISSE 1 & 2</td>
<td>7 (80 samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8/2001</td>
<td>7/2005</td>
<td>2009</td>
</tr>
<tr>
<td>MISSE 3 & 4</td>
<td>8 (71 samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8/2006</td>
<td>8/2007</td>
<td>2010-2011</td>
</tr>
<tr>
<td>MISSE 5</td>
<td>4 (105 samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8/2005</td>
<td>9/2006</td>
<td>2011</td>
</tr>
</tbody>
</table>

ISS Resource Requirements: None (post-flight analyses)

Revision Date: 04/28/10