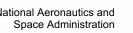
National Aeronautics and Space Administration


Low Level Neutron Spectroscopy

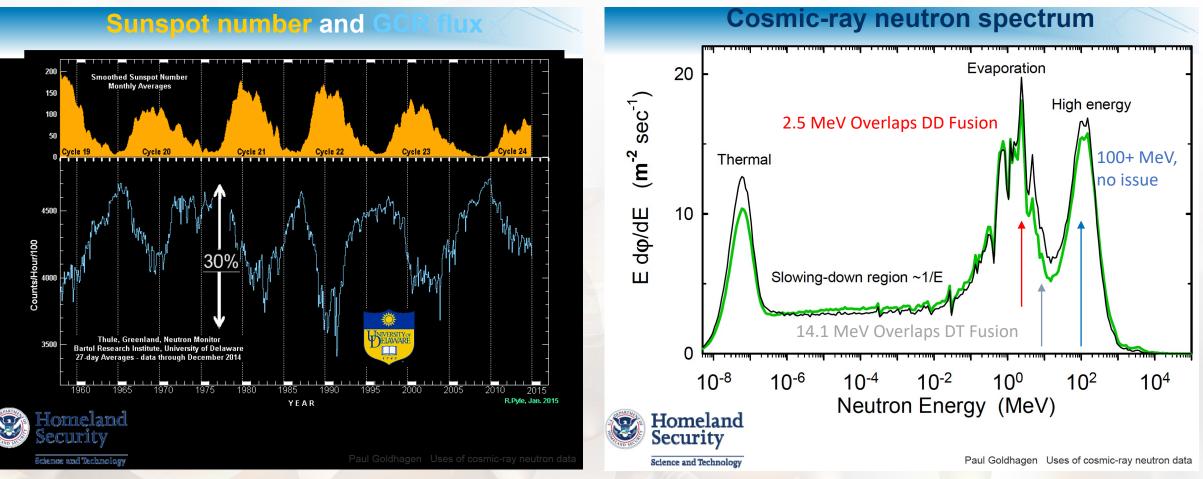
ICCF-24 Solid State Energy Summit Workshop

July 25-28, 2022

L. P. Forsley,^{1,2,3} B. Baramsai,^{2,4} T. Benyo,² B. Steinetz,² and P. Ugorowski^{2,4}

^{1.} lawrence.p.forsley@nasa.gov
^{2.} NASA Glenn Research Center, Cleveland, OH
^{3.} GEC LLC, Annandale, VA
^{4.} HX5, Cleveland, OH
^{v1.5}

NASA


Problem and the Promise

- 1. Neutrons have no charge
 - 1. Matter looks like empty space!
- 2. Neutrons can only be detected indirectly by scattering or capture
 - 1. Depending upon method efficiency may run from a few percent to < .1 %
 - 2. Scattering produces light pulses (scintillators)
 - 3. Background γ sources influences scintillators
 - 4. Captured by witness materials (producing γ or β), or
 - 5. Moderated and captured by ³He, ⁶Li, or ¹⁰B detectors (producing α , ³H or ⁷Li)
- 3. Real-time, temporally-resolved, neutron spectroscopy
 - 1. Nearly simultaneous detection with the nuclear reaction, unlike calorimetry
 - 2. Allows nuclear exit channels to be identified by Kinetic Energy
 - 3. Possibly differentiated from background by timing
 - Time-of-Flight is the spectroscopy "Gold Standard"
- 4. However, LENR is nearly aneutronic and the D(D,p)T reaction is favored 10⁶ times over the D(D,n)³He reaction.

Complications¹

National Aeronautics and Space Administration

Cosmogenic generated neutrons from secondary reactions complicate measuring low level experimental neutron fluxes. *Anti-correlated with high sunspot activity!*

 P. Goldhagen, "Use of Cosmic-Ray Neutron Data in Nuclear Threat Detection and Other Applications", Neutron Monitor Community Workshop— Honolulu, Hawaii (October, 2015). 1. Counting

Methods

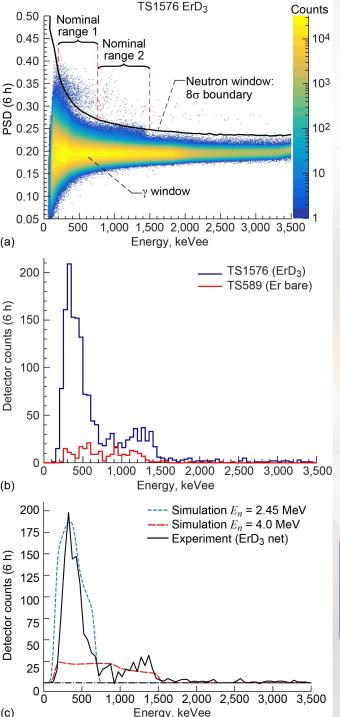
- 1. Efficiency is a few percent at best.
- 2. BF₃ and ³He Detectors: Need Moderation, most sensitive to thermal
- 3. Witness materials: activated and measured by gamma or beta
 - 1. Have thresholds, e.g. thermal, or activation in 100's of keV or a few MeV

2. Spectroscopy

- 1. Multiple Moderated Detectors, (³He Remballs) unfolded spectra
- 2. U2D moderated multiple ⁶Li detectors
- 3. Liquid and solid scintillators (temporal information 200 nsec)
 - 1. 10% efficiency < 10 MeV KE, 5% efficiency > 10 MeV KE
- 4. Pulse Shape Discrimination
 - 1. Differentiate between gammas and neutrons
- 5. Neutron Spectra Unfolding
 - 1. Use the moderated response of the Remballs, or scintillator light output, geometry, to approximate (n,p) (n,C) neutron recoil response in keVee (equivalent electron units)
 - 2. Calibrate keVee to keV/MeV neutron KE
- **3. Integrating Solid State Nuclear Track Detectors (SSNTD)**
 - 1. Poor neutron detection efficiency, on the order of $10^{-3} 10^{-5}$, > 100 keV KE
 - 2. Spectral resolution is poor, charged particles and neutron recoils > 100 keV/nucleon
 - 3. Permanent record

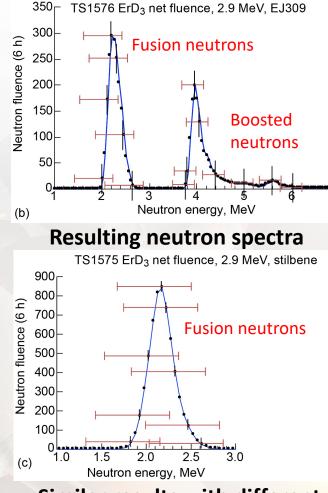
National Aeronautics and

Space Administration


Components of NUSTL's new neutron spectrometer

PMT and

Scintillator

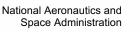

Neutron Scintillator Spectroscopy¹ National Aeronautics and Space Administration

Raw counts showing 8 σ pulse shape discrimination between 10¹⁴ γ /sec and neutrons. *Most of the neutrons thrown away!*

Compare deuterated sample With bare metal control Similar neutron backgrounds

Subtract control from deuterated sample for net flux

Net neutron flux with modeled response of different energy neutrons (2.45 MeV & 4.0 MeV)


Similar results with different scintillator on different run.

¹. B. Steinetz, et al., "Novel Nuclear Reactions Observed in Bremsstrahlung-Irradiated Deuterated Metals", NASA/TP-20205001616 (2020), published first in *Phys. Rev. C* **101**, 044610 (20 April 2020),

Experiments using bremsstrahlung photoneutrons to drive fusion reactions in deuterated metals.

Fusion neutrons and boosted neutrons observed repeatedly. Different detectors. Both TiD₂ and ErD₃

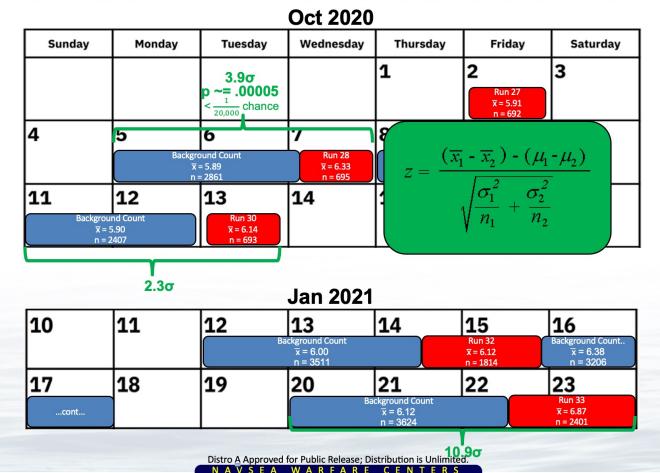
Neutron Bursts: Co-deposition or Cosmogenic?

Neutron Detector Results

CENTER

WARFARE

HIVER Project


Neutron Detection with ³He REMBALL¹

Two of three significant neutron counts from experiments at Indian Head were correlated with a cosmogenic background neutron increase at University of Delaware, Newark, DE (100 miles distant):

> 3.9σ October 5-7, 2020 2.3σ October 11-13, 2020

The third count was not correlated and may be indicative of signal from experiment:

 10.9σ January 20-23, 2021

So What?

1. Spectroscopic Neutron Detection

- Identify the nuclear exit channel by neutron energy
- Temporally resolve with real-time spectroscopy
- Neutrons travel at up to .2% speed of light : *what was the environment that just produced them?*
- Scattered neutron energy broadening used in laser fusion as core density monitor

2. Nearby Neutron Detection Control Detector

- Unambiguously know the cosmogenic neutron contribution
- 3. Compare Temporal Neutron Detection
 - Use time-resolved multiplicity to further resolve background neutrons
 - Correlate experimental conditions, e.g. pressure, I/V, etc.
 - Slow diagnostics can be viewed as post-triggers for fast (100s of ns) scintillators
- 4. PE and BPE passive neutron shielding
 - Reduce Cosmogenic neutron scattering
 - Reflect, and moderate, experimental neutrons back, but with energy losses
- 5. Anti-coincidence active shielding
 - Further reduce the background by vetoing cosmogenic neutrons

Going Forward

- Apply real-time neutron spectroscopy to a variety of LENR/LANR/LCF Systems.
- Are all forms of LENR/LANR/LCF aneutronic?
- What are the conditions that produce neutrons?
- Are the neutrons correlated or anti-correlated with other factors?
- Since neutron spectroscopy, and especially time-of-flight, is recognized by physicists it is less difficult to demonstrate new science using accepted diagnostics.

Like Goldilocks and the three bears: neutrons are our friends if just enough to detect but not too many!¹

^{1.} Neutrons are also useful