

The History of LENR Research at NASA Glenn Research Center

ICCF-24: Solid State Energy Summit July 25, 2022

Theresa L. Benyo¹: Principal Investigator, Lattice Confinement Fusion Project Lawrence Forsley²: Deputy Principal Investigator, Lattice Confinement Fusion Project Bruce Steinetz¹: Principal Investigator, Advanced Energy Conversion Project

> ¹NASA Glenn Research Center, Cleveland, OH ²Global Energy Corporation, Annandale, VA

Outline

- The Need: Novel Nuclear Fusion Reactions as an Energy Source
- Lattice Confinement Fusion
- Historic Experiment
- Investigating Triggers
- Definitive Proof
- Theory Development & Refinement
- Summary

Novel Nuclear Fusion Reactions as an Energy Source

- Harnessing fusion would provide humanity nearly limitless energy
- For 30 years multiple labs have observed fusion reactions suggesting Lattice Confinement Fusion (LCF)
- LCF may be the key to harnessing fusion within a compact contained system
 - Eliminates need for weapons-grade uranium (HEU) Compact, controllable power
 - Reduces safety, security, and supply concerns Zero radioactive waste
- - **Potential Long-Term Applications**

* Note: LCF offers near-term means for terrestrial exploration of warm dense matter, Heliophysics, and Astrophysics

How LCF Works

- Traditional fusion: Heats plasma 10x hotter than center of sun hard to control
- LCF addresses the pressure, temperature, and containment challenges with fusion
 - Heats very few atoms at a time
 - Approaches solar fuel density
 - Lattice provides containment

Technical Details Simplified

Part A: Electron Screening (increases fusion probability)

Part B: High Fuel Density (billion times more dense than traditional fusion)

A + **B** (+ trigger) = Viable Fusion

J-M Gas Cycling Experiments: Description

High flux of D through Pd/Ag hydride system:

- Test Article: Johnson-Matthey (JM) hydrogen purifier
 - Hydrogen purification accomplished by gas diffusion across Pd/Ag Tube
- Inspired by electrolytic wet cell experiments and LENR claims, G. Fralick (1989) used JM purifier to load Pd with D₂ since it's easier than loading D₂ during a wet cell experiment; looked for neutrons and heat release
 - Very little neutrons above background observed
 - Observed temp rise of 17 °C in 15 sec unloading D₂ but not with H₂
- Experiments in 2014 & 2018: pressurized cycling of D₂ gas produces heat & surface transmutations on PdAg tubing; evidence of LENR^{1,2}

Repeat of temperature rise during D₂ gas unloading

- 1989: 17°C temp rise in 15 s
- 2014: 25°C temp rise in 4 s
- 2018: 12 °C temp rise in 45 s

Scanning Electron Microscopy

- Showed areas of molten looking spots and craters
- Palladium melts at 1560 °C and silver melts at 962 °C yet system heater was kept under 425 °C

Anomalous Heat observed: flux of Deuterium (D2); Temp Rise: 2009: °5 C; 2012: 25°C during unload

¹G. Fralick, et al, "Transmutations observed from pressure cycling palladium silver metals with deuterium gas", International Journal of Hydrogen Energy, vol. 45, no. 56, pp. 32320-32330, 2020.

²B. Liu, et al, "Nuclear transmutation on a thin Pd film in a gas-loading D/Pd system," J. of Condensed Matter Nuclear Science, 13, pp. 311–318, 2014.

Timeline of NASA Events

- Several groups at NASA (LaRC, MSFC and GRC) followed various LENR researchers including Pons/Fleischman, Nagle, and Rossi (1989 to 2011)
 - Discussed and reviewed various approaches
- With GRC R&D management approval, Robert Hendricks (GRC) organized a LENR/Innovations Workshop held on Sept 21, 2011 at NASA GRC in Cleveland, OH
 - Speakers from GRC, LaRC and MSFC shared their current research
 - Dr. Bruce Steinetz, Dr. Theresa Benyo, and others attended with great interest
- Robert Hendricks briefed Center Director, Dr. Ray Lugo shortly after
 - Dr. Bruce Steinetz, Dr. Arnon Chait (representing Dr. Vladimir Pines), Gus Fralick, and Dr. Lei (GRC R&D Director) in attendance
 - Proposed a LENR research project at GRC; Dr. Lei authorized a small effort at GRC lead by Dr. Steinetz
 - Dr. Lugo orchestrated a briefing at NASA HQ where all NASA efforts were presented
- AEC Project lead by Dr. Steinetz grew from a few researchers to about 25 over the years from 2011 to 2018
 - Small amount of funding from the Director's Discretionary Fund (~2012-2013) grew to a large effort (2014 to 2018)
 - Various NASA HQ and other gov't agency reviews were held of the work over the active years
 - Culminated in the Phys Rev C journal papers; experiment and theory published in 2020
- AEC Project held a virtual workshop in May of 2020 to announce the results of the published work
 - Attended by 70 LENR researchers from industry, government and academia
- AEC Project transitioned to the LCF Project with the current funded effort (July 2021 to now)
 - Leadership transitioned from Dr. Steinetz to Dr. Benyo

Project Phases: Early Exploratory through Applied Research

<u>Hydrogen Purifier</u> D-flux in PdAg tube system: heating, transmutations

Slow Co-Deposition Confirm nuclear activity

Electrochemistry

Early: Exploration Phase Are there any Novel Rx?

SEM/e-GunExposure Activation of TiD2 + D-PE

X-ray Exposure Activation of TiD2 + D-PE

LINAC Exposure 100% Activation: HfD2/Mo/D-para

Plasma + Calorimeter

Current: Applied Research Understand Variables and Key interactions→ Heat Source

Scanning Electron Microscope (SEM) Energetic Electrons Into Deuterated Targets

Objective

- Investigate direct enhanced screening of deuterated targets via 10s keV energetic electrons (SEM)
- Evaluate literature claims of nuclear reactions (Lipson, 2009) under these conditions

GRC Findings

- Exposure of TiD₂ targets resulted in novel nuclear effects when exposed to electron beam energies (6-30 keV)
- Beta Scans (Tennelec) after exposure showed specimen had been activated
- CR-39: Showed evidence of fast neutrons
 - Corroborated research study by Lipson (2009)
- Activation TiD₂ success: <20% but exposed only to nano-amp level currents
- Exposure of unloaded Ti: No activation

X-Ray Beam Volumetric Electron Screening Via Photons

Objective

 Investigate volumetric screening of deuterated targets exposed to X-ray photons

Findings

- Exposure of mixture of TiD₂ powder and deuterated polyethylene (D-PE) in Swagelok tube resulted in novel nuclear effects when exposed to X-ray energies (65-200kV; microfocus beam)
 - Beta Scans (Tennelec) after exposure showed specimen had been activated
 - Liquid Beta Scintillation: Showed beta source created with energy consistent with tritium
 - Activation of deuterated samples: success >50%
 - No Activation of unloaded materials: H-Polyethylene or Ti

National Aeronautics and Space Administration

Linear Accelerator (LINAC) **Volumetric Electron Screening Via Gamma Photons**

Objective

 Investigate volumetric screening of deuterated targets exposed to gammaray photons at sub-threshold energies (<2.226 MeV D-photo-dissociation)

Findings

- Exposure of HfD₂/D-Para/Mo and ErD₃/D-Para/Mo to 1.95 MV beam resulted in activation of 100% of 35 exposures
- Scalable with increased mass, beam energy, co-targets in the gamma beam.

CR-39 Triple track

25 um

25 um

- Created Mo-99/TC-99m (Important medical isotopes)
- CR-39/BubbleTech: Showed evidence of fast neutrons

Gamma Spectroscopy

Tc-101

545.1 keV

600

Mo-101

590.1 keV Mo-101

Ph-214

609.3 keV

695.6 keV

Mo-99

739.5 keV &

777.9 keV

Plasma Reactor Delivery of Ions/Energetic Electrons Into Deuterated Targets

Objective

 Investigate dynamic loading of D+ and screening electrons into deuterated targets with customized microstructure

Findings

- Tests with TiD₂ powder showed P_{excess} ~4 W
- Tests with PdAg showed P_{excess}~24 W
- Anomalous gas changes
 - Measured during test: growth of AMU-2, 3, 5, 6; and decline in AMU-4 (D2)
- Production of excess thermal power repeat on average ~20-30%; need to better understand mechanisms
 - Planned Design of Experiments: gain understanding of key variables and interactions

Electrochemistry Dynamic In-Situ Creation of High-Density Deuterated Microstructure

Collaboration Partner: US Naval Surface Warfare, Dahlgren Division

Objective

Investigate high current (900 mA) D+ co-deposited in-situ microstructure

Approach

- Fast Pd/D/Li Co-deposition Protocol¹
 - Heavy water (D₂O) or light water (H₂O) control electrolyte; 40-hour run
- Calorimetry²
 - 100 mW sensitivity, calibrated against both H₂O and D₂O

Findings

- H₂O cells no heat, perpendicular magnetic field D₂O, no excess power
- 6 out 7 D₂O cells produced sustained excess thermal power, ranging from 250 mW to 1500 mW, 86% success
- High Power Density (0.0166g): 15 W/gm to 90 W/gm
- ICP-AES, XPS, TOF-SIMS, SEM/EDX show significant elemental transmutation with D₂O (e.g. Zn > 20%)

¹ Letts, D. and Hagelstein, P., "Modified Szpak Protocol for Excess Heat", J. Condensed Matter Nucl. Sci. 6 (2012)

- ² US Patent #8,419,919, "System and Method for Generating for Particles"
- ³ Dahlgren Division, "Novel Energy Source Program", Naval Surface Warfare Center, (2016)

⁴Smith, P., Hendricks R. C., and Steinetz B. M., "Electrolytic co-deposition neutron production measured by bubble detectors", J. Electroanal. Chem., 882 (2021) 115024

E-Chem Cell w/integrated TEG

for calorimetry (Navy Dahlgren)

National Aeronautics and

Cathode

Anti-parallel

Anode

Space Administration

LCF basic research has demonstrated nuclear reactions

work

7/21/2022

Observation of D-D fusion and secondary nuclear reactions with TiD_2

Comparison of GRC observed D-D fusion neutrons with Italian Tokamak neutrons

National Aeronautics and Space Administration

200

100

Û

2

E. A. E

3,5

13

The Path: Electron Screening

- Electron screening results in a more transparent Coulomb Barrier, shifting the Gamow Factor, as if deuterons were at far higher energies.
- This exponentially increases fusion rates.
- Laboratory astrophysics using accelerated deuteron beams across the Periodic Table show lattice and plasma screening provide up to 3+ keV screening.
- The PRC Theory Paper indicates a higher probability of large angle scattering of screened charged particles on screened deuterons.

National Aeronautics and

Space Administration

Electron Screened Enhanced Cross Sections

However, screening is only effective below 10 keV.

$$\sigma_{\text{bare}}(E) = \frac{S(E)}{E} \exp\left[-G(E)\right]$$

Summary

- We have demonstrated multiple nuclear reactions initiated by various experimental techniques
 - Nuclear emissions: neutrons, alphas, protons, betas, He-3
 - Not all methods produce expected D-D reaction products
 - Transmutations, including tritium
 - Heat release
- Co-deposition and LINAC photon stimulation are highly reproducible
- Theory: astrophysics and accelerator experiments have provided insights in addressing Coulomb barrier
- Developed critical concentration of expertise in multiple disciplines + experimental and theoretical resources, and are following evidence-based approach to enable timely progress