Discussion of Medical Suction for Exploration Medical Capability

J. B. McQuillen1, J. Thompson2, K. M. Gilkey1 and S.W Hussey1

1NASA Glenn Research Center
2Umpqua Research Company
Background

- Gap 4.09: “We do not have a system for medical suction and fluid containment that can operate properly in a reduced gravity environment.”

- Effort focuses on development of two medical suction and fluid containment systems that can operate in a reduced gravity environment.
 - System for airway management, surgical and dental procedures.
 - System for treatment of a pneumothorax

- To date, NASA has a device packed in Physician Equipment Pack.
 - Current Device has not been used.
 - Training has revealed that device could come apart during usage and is difficult to operate.
 - Current Device is not suitable to meet the wide range of requirements for medical suction

14 January 2015
2015 Investigators Workshop
Relevant Medical Conditions - Shall

- Ventilator (and intubation) Support
 - Anaphylaxis
 - Choking/Obstructed Airway
 - Decompression Sickness
 - Medication Overdose/Adverse Reaction
 - Radiation Sickness
 - Seizure
 - Smoke Inhalation
 - Surgical Treatment
 - Toxic Exposure

- Dental Suction
 - Abscess
 - Avulsion/Tooth Loss
 - Caries
 - Crown Replacement
 - Exposed Pulp/Pulpitis
 - Filling Replacement

- Nasogastric Suction
 - Intra-abdominal Infection (diverticulitis, appendicitis, small bowel obstruction)

- Surgical Treatment
Relevant Medical Conditions - Should

Medical Conditions to be treated if Mass, Power & Volume Constraints Permit:

- Surgical Suction
 - Abdominal Injury
- Nasogastric Suction
 - Abdominal Injury
- Chest Tube Suction
 - Chest Injury/Pneumothorax
- Ventilator support:
 - Stroke
 - Sudden Cardiac Arrest
Suction Requirements

- **Airway Management, Oropharyngeal Suction, And Surgical Suction:**
 - Vacuum Pressure: 500 mm Hg
 - Flow Rate: 30 l/min
 - Total Duration: 30 min
 - Exposure Intervals: 15 seconds ON, 60 second OFF

- **Dental Suction**
 - Vacuum Pressure: 400 mm Hg

- **Nasogastric Suction**
 - Vacuum Pressure: < 120 mm Hg

- **For chest tube drainage**
 - Vacuum Pressure: 10-20 cm H$_2$O (20-40 mm Hg)
 - Flow Rate: 20 l/min
 - Total Duration: 24 Hours
 - Heimlich Valve or Water Seal to prevent backflow.
Typical Vacuum System

- **Generic Layout:**
 - Patient/Object to be evacuated
 - Probe
 - Vacuum Regulation
 - Trap(s)
 - Hose/Line
 - Pump
 - Exhaust

- **Medical Systems Differences:**
 - Collection Devices or Vacuum Probe
 - Patient imposes sterility requirements and backflow prevention
Collection Probe

- Dependent on type of medical suction being performed:
- Behavior may be loosely approximated by Hagen-Poiseuille Equation

\[\Delta P = \frac{8\eta L}{\pi D^2} Q \]

Where
- \(\Delta P \) = Vacuum Level
- \(\eta \) = Viscosity or Fluids Resistance to Flow
- \(L \) = Tubing Length
- \(Q \) = Flow Rate
- \(D \) = Tubing Diameter

Viscosity will increase significantly if biofluid contains blood, tissue, debris, or other solids!
Probe

- Oropharyngeal Suction - Yankauer suction tube
- Endotracheal Suction – Combitube - Double Lumen Device
- Nasogastric Suction - Salem-Sump Tube – Double Lumen Device
- Pneumothorax Suction –
 - Multiple eyelet catheter.
 - Check or one-way valve:
 - Heimlich if air only.
 - Current Water seal devices are not useable in reduced gravity
Water Seals

- Used for Pneumothorax
- Provide Vacuum Regulation
- Prevent backflow
- “Dry” before use, but requires filling with sterile water prior to use.
 - Source of sterile water?
 - Fluid transfer and positioning in reduced gravity
- Air bubbles through water-filled tubes in multiple chambers.
 - Indicates flow
 - Prevents backflow contamination
 - Relies on gravity to keep fluid in tubes.

14 January 2015
2015 Investigators Workshop
Centralized Vacuum Source

• Available sources:
 – ISS Housekeeping vacuum cleaner
 – For Aeromedical Evacuation on C-130, USAF uses Urinal Source.
 • Requires check valve to prevent backflow
 • ISS has sufficient air flow rate for similar design.
• Need to require separate storage and/or treatment for biofluid and human waste. Avoid overboard venting/dumping
 – Contamination of sensitive surfaces: solar arrays, thermal radiators, antennas, etc.
 – Thrust associated with vented mass.
Traps

- Terrestrial systems use traps that are primarily gravity driven.
 - As fluid is deposited into trap, air escapes out of the top because it is lighter than the fluid.
 - As an added measure of capturing the fluid, a porous insert is used to retain the biofluid especially as the liquid level rises in the trap.
- Other methods for retaining fluid and venting air in microgravity are necessary.
 - Cyclonic – flow is injected tangentially into a cylinder to centrifugally separate the gas and liquid
 - Capillary – surface tension and wetting phenomena are used to separate the gas and liquid.
 - UMPQUA
UMPQUA Separator

- UMPQUA Research Company developed and tested a collapsible device containing a highly absorbent material.
- Device successfully tested using biofluid simulants:
 - Saline solution
 - Yogurt
 - 50/50 mixture of bovine blood and normal saline solution
 - Cottage cheese

Biofluid Separator Concept

Yogurt Test Results
Summary

• Many conditions require suction.
• Wide range of flow rate and vacuum pressure requirements.
• Vacuum source needs to be defined given impacts to spacecraft systems and capabilities.
• Critical technology is biofluid separation AND containment.
• UMPQUA has developed and successfully tested a prototype separator.