Electron Screened and Enhanced Nuclear Reactions

ICCF-24 Solid State Energy Summit

July 25-28, 2022

Lawrence P. Forsley
Deputy PI, NASA Lattice Confinement Fusion Project, USA

Dr. Louis F. DeChiaro
Senior Physicist, Naval Surface Warfare Center, Indian Head Division, USA

lawrence.p.forsley@nasa.gov
Outline

1. Electron Screening, U_e
 - Astrophysics
 - Laboratory Astrophysics
 - Terrestrial
 - LENR and LCF
2. Enhanced Screening: 7Be Model System
3. Density Functional Theory Modeling
4. Conclusion
5. Acknowledgements
Electron Screening

1. Astrophysics
 1. Strong and Weak screening: *Salpeter, 1954*
 2. Fermi Degeneracy, \(\approx 10^{23} \text{ e}^{-/\text{cm}^3} \)
 3. Holds up white dwarf stars
2. Laboratory Astrophysics
 1. Accelerator studies *Rolf, Czerski, Huke et al., 1980s* *Bystrisky, Kitamura, 2000s*
 2. Gamow Factor Enhancement *Pines, 2020*
3. Terrestrial
 1. Metal Conduction bands, ICF
4. LENR and LCF
 Srinivasen, 1991
 Schenkel, 2019

\(^7\text{Be}_4 \) has astrophysical significance

Radioactive but whose EC decay rate can be modified by compression. *(\(^8\text{Be} \text{ is unstable and decays to 2 } \alpha \)!)*

The center of the Sun has a density of 150 gm/cm\(^3\) and a pressure of 26.5 million Gpa

This will affect the decay rate of \(^7\text{Be} \) at the solar core and the \(^8\text{B} \) neutrino flux.

Experiments diverge from theory below 6 keV

\(d(d,n)^3\text{He} \) fusion cross-section

Without screening

Pd Lattice Screening Potential Calculation\(^1\)

Screening works below 10 keV Kinetic Energy and increases nuclear reaction rates by potentially 20 orders of magnitude.

Calculations by V. Pines and M. Pines, NASA Advanced Energy Conversion Project
Comparison of Lattice vs. Deep Screening \(^1\).

How to increase deep screening?

![Graphs showing comparison of Lattice vs. Deep Screening](image)

Glow Discharge or Plasma Ion source
X-ray and gamma photon source

\(^1\) Calculations by V. Pines and M. Pines, NASA Advanced Energy Conversion Project
Lattice screening:
- Key parameter for reaction scale-up
- More effective at lower energies

Material composition/microstructure can be combined with other physical parameters (fields, plasma current, pulse, other) to increase thermal power output

Specific power calculation assumed only primary D-D fusion reactions (~5 MeV/Rx)
- Subsequent cascading reactions expect 4-5x increase → 1000 W_{th} (1000 cc material)

1. Calculations by V. Pines and M. Pines, NASA Advanced Energy Conversion Project
Enhanced Screening: 7Be Model System

- 7Be has astrophysical significance:
 - The decay rate in stellar cores effects the 8B neutrino flux.
- It can be prepared terrestrially to study changes in half-life using the reaction:
 - 7Li(p,n)7Be, then
 - 7Be decays by electron capture (EC) to 7Li with a half-life, $t_{1/2} = 53.12$ days
 - $\approx 10.4\%$ probability 7Be decays to the first 7Li excited state $3/2^{-}$
 - emitting 477.6 keV γ-ray photon.
- A 0.8% change in 7Be $t_{1/2}$ has been observed (and DFT modeled) when placed within:
 - Fullerene (Buckyball)
 - Interstitial Pd
 - Diamond Anvil
- *Demonstrates a chemical environment interacts with a nucleus*
- *Density Functional Theory can model these effects*
Ab-initio (First Principles) Computational Lattice Design

• Density Functional Theory (DFT) e.g. Quantum Espresso, VASP, WIEN2K, etc.
 • Solve the approximate Schrödinger equation in a solid lattice
 • Provides band structure and local electron density
 • Can calculate complex, inhomogeneous lattices and interfaces
 • Can incorporate external EM fields
• Evaluate complex hydrogen isotope-lattice interactions
• Evaluate potential suitability of alternative elements, alloys, and structured materials (superlattice)
• Limitations
 • Pseudo-potentials for Z>4 (Beryllium, ^4Be) limited to valence electrons
 • Resolved by additional pseudo-potential file calculations to include core electrons
 • Iterates to 0°K ground state, (e.g. not room-temp 273 °K or higher)
 • Can be resolved by more computationally intensive dynamic calculations.
DFT modelling of Be $2s^2$ and $C_{60} 2p^2$ electron density

Modeled valence shells of Be and C only

Be $2s^2$

C_{60} $1s^2 2s^2 2p^2$ but only the $2p^2$ valence orbital modeled
Embedded Be, modelling $2s^2$ orbital

1% decrease in electron cloud volume

Bare Be

Be embedded within C_{60} Fullerene “buckyball”
Comparison of Be $2s^2$ and $1s^2 2s^2$ electron densities

Higher electron density calculated at nucleus by including both Be shells!
Be & Embedded Be, using Be 1s² 2s² orbitals

.1% decrease in electron density, but
Electron Density Within a Bohr radius \((5.3 \times 10^{-11} \text{m})^3\) volume

- Be embedded in \(\text{C}_{60}\)
- \(\text{C}_{60}\) alone
- Be alone

-.1% compression gives > 10x higher electron density in Be nucleus. Consistent with .8% reduction in half life!

Be nucleus is \(\approx .003 \text{ pm (}10^{-15} \text{ m})\)

Broad electron density after subtractions

Closeup Be electron density
Pd/D and Pd CaO Lattice Electron Densities

Just valence electrons

Modeling deuterium motion

Modeling induced ferromagnetism

Palladium Deuteride in SAV

Pd CaO Interface
Conclusion

• Electron screening has astrophysical and terrestrial implications
 • Stellar evolution
 • Fusion
 • Lattice Confinement Fusion
 • Low Energy Nuclear Reactions
• Occurs at high electron densities,
 • Fermi Degenerate, 10^{23} e-/cm3
 • *Not applicable to tokamaks at 10^{14} ions/cm$^3*
• Occurs at modest energies
 • Below 10 keV
 • *The nuclear interaction cross-section increases at ever lower energies*
• It enhances nuclear reaction rates
 • *By orders of magnitude*
• Electron screening can be modeled
 • Modeling allows optimum materials and conditions to be determined
 • Assists in guiding theory, modeling and experiment through feedback
Acknowledgements

Research conducted under:
NASA Advanced Energy Conversion Project, NNC17IA03I, “Condensed Matter Nuclear Reactions”
JWK NCRADA-NSWCIHEODTD-20-174, “Advanced Energy and Propulsion Research and Development”
NASA Lattice Confinement Fusion Project, NNC22OB04A, “NAVY-NSWC AEC Project”

With support from JWK and NASA.

With additional calculations by Dr. Vlad Pines and Dr. Marianna Pines, Senior Theoretical Physicists, NASA Lattice Confinement Fusion Project and the Advanced Energy Conversion Project.

In memorium of Dr. Marianna Pines