

National Aeronautics and Space Administration

Electron Screened and Enhanced Nuclear Reactions

ICCF-24 Solid State Energy Summit

July 25-28, 2022

Lawrence P. Forsley Deputy PI, NASA Lattice Confinement Fusion Project, USA Dr. Louis F. DeChiaro Senior Physicist, Naval Surface Warfare Center, Indian Head Division, USA

lawrence.p.forsley@nasa.gov

Outline

- 1. Electron Screening, U_e
 - Astrophysics
 - Laboratory Astophysics
 - Terrestrial
 - LENR and LCF
- 2. Enhanced Screening: ⁷Be Model System
- 3. Density Functional Theory Modeling
- 4. Conclusion
- 5. Acknowledgements

Electron Screening

1. Astrophysics

- Strong and Weak screening: Salpeter, 1954
- 2. Fermi Degeneracy, $\approx 10^{23} \text{ e}^{-1}/\text{cm}^{-3}$
- 3. Holds up white dwarf stars

2. Laboratory Astrophysics

- Accelerator studies Rolf, Czerski, Huke et al., 1980s Bystrisky, Kitamura, 2000s
- 2. Gamow Factor Enhancement Pines, 2020
- 3. Terrestrial
 - 1. Metal Conduction bands, ICF
- 4. LENR and LCF

Srinivasen, 1991 Schenkel, 2019

⁷Be₄ has astrophysical significance

Radioactive but whose EC decay rate can be modified by compression. (⁸Be is unstable and decays to 2 α !)

The center of the Sun has a density of 150 gm/cm³ and a pressure of 26.5 million Gpa

This will affect the decay rate of ⁷Be at the solar core and the ⁸B neutrino flux.

https://www.oecd-nea.org/janisweb/book/deuterons/H2/MT4/renderer/220

Pd Lattice Screening Potential Calculation¹

U_e= 310 eV _{10⁻⁵} ↓*U_e* = 1900 eV 00-0-00000-10-10-Cross section, Barns *f*(E)=10²⁰ 10-15-10-20bare f(E)=10¹² bare 10-25-Lattice Screening Potential: 310eV Lattice Screening Potential: 1900eV 10-30-10 100 0.1 10 Kinetic Energy, KeV Kinetic Energy, KeV Κ $\sigma_{bare}(E) = S(E) \cdot E^{-1} \cdot \exp(-G(E))$ **Bare cross-section**

Enhancement factor

10-5

10-10-

10-15-

10-20-

10-25

10-30-

0.1

Cross Section, Barns

E Kinetic Energy, keV U_e Electron Screening, keV G(E) Gamow Factor S(E) Astrophysical Factor

Enhanced Experimental cross-section

 $f(E) = \frac{E}{(E+U_e)} \cdot \exp\left\{G(E) - G(E+U_e)\right\}$ $\sigma_{exp}(E) = \sigma_{bare}(E) \cdot f(E)$

Screening works below 10 keV Kinetic Energy and increases nuclear reaction rates by potentially 20 orders of magnitude. ¹ Calculations by V. Pines and M. Pines, NASA Advanced Energy Conversion Project

National Aeronautics and Space Administration

Comparison of Lattice vs. Deep Screening^{1.}

How to increase deep screening?

X-ray and gamma photon source

^{1.} Calculations by V. Pines and M. Pines, NASA Advanced Energy Conversion Project

100

Gain: Enhanced Cross-section vs Thermal Power¹

Cross Section vs Kinetic Energy

- Lattice screening:
 - Key parameter for reaction scale-up
 - More effective at lower energies
- Material composition/microstructure can be combined with other physical parameters (fields, plasma current, pulse, other) to increase thermal power output
- Specific power calculation assumed only primary D-D fusion reactions (~5 MeV/Rx)
 - Subsequent cascading reactions expect 4-5x increase \rightarrow 1000 W_{th} (1000 cc material)

¹ Calculations by V. Pines and M. Pines, NASA Advanced Energy Conversion Project

Enhanced Screening: ⁷Be Model System

- ⁷Be has astrophysical significance:
 - The decay rate in stellar cores effects the ⁸B neutrino flux.
- It can be prepared terrestrially to study changes in half-life using the reaction:
 - ⁷Li(p,n)⁷Be, then
 - ⁷Be decays by electron capture (EC) to ⁷Li with a half-life, $t_{\frac{1}{2}}$, = 53.12 days
 - ≈ 10.4% probability ⁷Be decays to the first ⁷Li excited state 3/2-
 - emitting 477.6 keV γ -ray photon.
- A 0.8% change in ⁷Be $t_{\frac{1}{2}}$ has been observed (and DFT modeled) when placed within:
 - Fullerene (Buckyball)
 - Interstitial Pd
 - Diamond Anvil
- Demonstrates a chemical environment interacts with a nucleus
- Density Functional Theory can model these effects

Ab-initio (First Principles) Computational Lattice Design

- Density Functional Theory (DFT) e.g. Quantum Espresso, VASP, WIEN2K, etc.
 - Solve the approximate Schrödinger equation in a solid lattice
 - Provides band structure and local electron density
 - Can calculate complex, inhomogeneous lattices and interfaces
 - Can incorporate external EM fields
- Evaluate complex hydrogen isotope-lattice interactions
- Evaluate potential suitability of alternative elements, alloys, and structured materials (superlattice)
- Limitations
 - Pseudo-potentials for Z>4 (Beryllium, ^ABe₄) limited to valence electrons
 - Resolved by additional pseudo-potential file calculations to include core electrons
 - Iterates to 0°K ground state, (e.g. not room-temp 273 °K or higher)
 - Can be resolved by more computationally intensive dynamic calculations.

National Aeronautics and Space Administration

DFT modelling of Be $2s^2$ and $C_{60} 2p^2$ electron density

Modeled valence shells of Be and C only

Embedded Be, modelling 2s² orbital

National Aeronautics and Space Administration

0.1

0.01

0.001

Comparison of Be 2s² and 1s² 2s² electron densities

Higher electron density calculated at nucleus by including both Be shells!

Be & Embedded Be, using Be 1s² 2s² orbitals

.1% decrease in electron density, but

Electron Density Within a Bohr radius (5.3 x 10⁻¹¹m)³ volume

Broad electron density after subtractions

Closeup Be electron density

National Aeronautics and Space Administration

Pd/D and Pd CaO Lattice Electron Densities

National Aeronautics and Space Administration

Just valence electrons

Modeling deuterium motion

Modeling induced ferromagnetism

14

Conclusion

- Electron screening has astrophysical and terrestrial implications
 - Stellar evolution
 - Fusion
 - Lattice Confinement Fusion
 - Low Energy Nuclear Reactions
- Occurs at high electron densities,
 - Fermi Degenerate, 10²³ e-/cm³
 - Not applicable to tokamaks at 10¹⁴ ions/cm³
- Occurs at modest energies
 - Below 10 keV
 - The nuclear interaction cross-section increases at ever lower energies
- It enhances nuclear reaction rates
 - By orders of magnitude
- Electron screening can be modeled
 - Modeling allows optimum materials and conditions to be determined
 - Assists in guiding theory, modeling and experiment through feedback

Acknowledgements

Research conducted under:

JWK NCRADA-NSWCDD-16-191, "Low Energy Nuclear Reactions (LENR) Materials Design and Characterization" NASA Advanced Energy Conversion Project, NNC17IA03I, "Condensed Matter Nuclear Reactions" JWK NCRADA-NSWCIHEODTD-20-174, "Advanced Energy and Propulsion Research and Development" NASA Lattice Confinement Fusion Project, NNC22OB04A, "NAVY-NSWC AEC Project" With support from JWK and NASA.

With additional calculations by Dr. Vlad Pines and Dr. Marianna Pines, Senior Theoretical Physicists, NASA Lattice Confinement Fusion Project and the Advanced Energy Conversion Project.

In memorium of Dr. Marianna Pines