Nature-Inspired Assembly: Biomimetic Approaches of the MIT Media Lab Space Exploration Initiative

Nature-Inspired Exploration for Aerospace (NIEA)
October 4-6, 2017
Ohio Aerospace Institute – Cleveland, OH
The Path to Biomimicry

Curiosity & Investigation Driven

Problem Driven

Image Credit: Biomimicry.org

Image Credit: ESA
Self-assembly in Nature

Image Credit: MD Simulation of Protein Folding, NIH & University of Illinois Urbana-Champaign
Self-assembly in Nature (human-mediated)

Self-assembly in Nature (coordinated systems)

Image Credit: Courtesy of Matthew Lutz, Princeton University, and Chris Reid, University of Sydney
Engineered, Self-assembly Analogs

Image Credit: Tibbits Self-Assembly Lab & Architecture Practice, MIT
Nature’s Geodesic Dome ("buckminsterfullerene")

C_{60}

Image Credit: Mstroek, CC

Image Credit: Montreal Biosphere
TESSERAE

(Tessellated Electromagnetic Space Structures for the Exploration of Reconfigurable, Adaptive Environments)
TESSERAE

(Tessellated Electromagnetic Space Structures for the Exploration of Reconfigurable, Adaptive Environments)

Multiple TESSERAE form MOSAICs, or Mars-Orbiting Self-Assembling Interlocking Chambers
Path to Assembly Prototype

Magnet joint design
- Must fully constrain the bonding for proper geometry
- Minimally, define two unique joints

Modeling
- Fix the dihedral angle for proper geometric configuration
- Recessed holes for magnets, flush mating edges

Fabrication
- 3D printing & rapid prototyping approach
- 3mm Neodymium magnets
- Steps toward natively embedded sensor network
Native Sensor Embedding – rapid prototyping

Proof of Concept Circuit Design
- Completed in a matter of days
- Includes:
 - micro solar panels
 - Energy harvesting chip
 - Li-ion battery
 - BLE emitter
 - Gyro
 - Accelerometer
 - Magnetometer
 - Temperature sensor
 - Timing crystal

Sensor network should be built natively into the material
- Embedding PCBs into the tiles
- Flexible circuitry
- 3D traces & 3D circuits
Initial Mechanical & Dynamics Modeling Validations
Research & Deployment Goals

To advance the future of space architecture

To augment space architecture with natively embedded sensor networks

To support new waves of humans experiencing zero gravity

To support Mars & Deep Space mission concepts for NASA
Space Exploration Initiative | Mission

• *Democratize access to space exploration technology*

• *Build space technologies that revolutionize the future of exploration while also profoundly benefiting life on Earth.*

• *Unite engineers, scientists, artists and designers, to push forward on active prototyping of our sci-fi future at scale.*
Space Initiative Research

Space Telecommunications
Robotics, Nets and Tethers
Space BioEngineering
Space Materials
Self-Assembly
Structures
Exosuits
Climate
VR/AR
Space Initiative Research (nature-inspired)

Space Telecommunications
Robotics, Nets and Tethers
Space BioEngineering
Space Materials
Self-Assembly
Structures
Exosuits
Climate
VR/AR
Space Exploration Initiative | Our Team & Advisors

Co-PIs

Joi Ito
Media Lab Director

Dr. Maria T. Zuber
MIT VP for Research

Founder & Lead

Ariel Ekblaw
PhD Candidate

Research Mentors

Dr. Joe Paradiso
Media Lab PI, Responsive Environments

Dr. Kerri Cahoy
MIT AeroAstro PI, STARLAB
Thank you!

- MIT Media Lab Consortium
- Space Exploration Initiative members
 - Dr. Joe Paradiso
 - Dr. Neri Oxman