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1. Code Description 

Numerical experiments for test cases C3.3 and C2.2 are conducted in this work using our 

RDGFLO3D (Reconstructed Discontinuous Galerkin FLow) code. The RDGFLO3D 

solves the compressible Navier-Stokes equations using a reconstructed discontinuous 

Galerkin (rDG) formulation on hybrid grids, which can contain one or combination of the 

four most common element types: tetrahedra, prisms, pyramids, and hexahedra. Our rDG 

method is based on a Hierarchical WENO reconstruction, termed HWENO(P1P2), which 

is designed not only to enhance the accuracy of the discontinuous Galerkin method but 

also to ensure the nonlinear stability of the rDG method1,2. In the HWENO(P1P2) 

method, a quadratic polynomial solution (P2) is first reconstructed using a WENO 

reconstruction from the underlying linear polynomial (P1) discontinuous Galerkin 

solution to ensure the linear stability of the rDG method and to improve the efficiency of 

the underlying DG method. The first derivatives of the quadratic polynomial solution are 

then reconstructed using a WENO reconstruction in order to eliminate spurious 

oscillations in the vicinity of strong discontinuities and thus ensure the nonlinear stability 

of the rDG method. Both the explicit three-stage third-order TVD Runge-Kutta scheme 

and implicit third-order Runge-Kutta or Rosenbrock schemes have been developed to 

advance solution in time for the unsteady flow problems3,4. A p-multigrid method has 

been developed to accelerate steady state solutions5,6. The parallelization of the 

RDGFLO3D code is achieved using a Message-Passing-Interface (MPI) programming 

paradigm based on the domain decomposition by METIS.  The RDGFLO code can also 

be accelerated on GPUs using OpenACC. The RDGFLO3D code has been used to 

compute a variety of both steady-state and time-accurate flow problems on arbitrary 

grids. The numerical experiments indicate that the RDGFLO3D is able to provide sharp 

resolution of discontinuities essentially without any spurious oscillations, and achieve the 

designed third-order of accuracy for smooth flows in both space and time. 

 

2. Case Description 

The RDGFLO3D code has been used to compute two test cases in the workshop: C3.3 

and C2.2. The first test case is the Taylor-Green vortex flow problem at a Reynolds 

number of 1,600 and a Mach number of 0.1. This test case is chosen to assess the DNS 

ability of the RDGFLO3D code. The initial condition for the Taylor-Green vortex is an 

mailto:xliu29@ncsu.edu


analytical function provided by the workshop. The numerical experiments are conducted 

using a second-order DG method and a 3rd order rDG method on different grid sizes to 

demonstrate the accuracy and performance of the RDGFLO3D code. All the quantities 

requested by the workshop are obtained and compared with the reference data. The 

second test case involves a laminar flow past a Delta Wing at a Reynolds number of 

4,000 and at a Mach number of 0.3. This test case is chosen to test if the RDGFLO3D is 

able to effectively resolve the flow features in complex conditions. The flow is initialized 

from the uniform free stream condition. The numerical experiments are performed using 

a second-order DG method and a 3rd order rDG method to demonstrate the performance 

of the RDGFLO3D code. The density residual is used as the convergence indicator.  Runs 

were performed on the ARC at the NC State University. All machines are 2-way SMPs 

with AMD Opteron 6128 (Magny Core) processors with 8 cores per socket (16 cores per 

node). 

3. Meshes 

Three hexahedral meshes, with 40x40x40, 81x81x81 and 161x161x161 cells, are used in 

the Taylor-Green vortex problem. 

For Delta wing case, a sequence of 3 unstructured meshes, containing 15813, 95860 and 

674260 tetrahedral elements, are used for the accuracy and efficiency study. 

 

4. Results 

The mesh and order refinement studies are all performed on multiple processors and  

work units are obtained using the formula shown below,  

Work units =
Wall time x Number of cores

TauBench time
 

where the average TauBench CPU time is 35.6 seconds. 

4.1 3D Taylor-Green vortex flow 

The change in the integrated kinetic energy Ek over time is shown for all three grid levels 

in figure 1. With grid resolution, the prediction of the integrated kinetic energy improves. 

Figure 2-4 shows the evolution of the energy dissipation rate in several forms. The 

evolution of kinetic energy dissipation rate, ∊= -dEk/dt, is given in figure 2. Here, the 

accuracy improves with grid resolution and the 1613 grid is in excellent agreement with 

the reference solution. The evolution of enstrophy ℇ, is given in figure 3. For 

incompressible flow,  ℇ =
1

2

𝜌0

𝜇
∊ , and one may expect the prediction of ℇ and ∊ be 

similar. However as the figure shows, the enstrophy is more difficult to resolve 

numerically. The peak enstrophy is severely underpredicted on the coarsest grid. The 

prediction improves with grid resolution and the enstrophy on the 1613 grid approaches 

the correct levels well. The primary contribution of the energy dissipation rate, ∊1, can be 

computed from the deviatoric portion of the strain rate tensor (figure 4). This prediction 

of this quantity is very similar to the prediction of the enstrophy evolution. The other 

contribution to the energy dissipation rate, ∊3, is from the product of pressure and 



dilatation. For incompressible flow this term should be very small. With grid resolution, 

the prediction of ∊3 improves. 

For this case, the Q criterion at t=8.0 is shown in figure 6, computed based on the 

rDGP1P2 scheme on the finest mesh. The resolution of the calculated turbulent structures 

is very similar to the illustration from other's reference 7. On the 1613 grid, the contour of 

the vorticity norm on the constant x-plane, x = −𝞹L, at time t = 8 is shown in figure 7. 

The time-stepping is done using a fourth order explicit Runge-Kutta with a fixed time 

step.  

 
 

 

Fig. 1 Evolution of the dimensionless kinetic energy as a function of the 

dimensionless time. 



 
 

Fig. 2 Evolution of the dimensionless kinetic energy dissipation rate as a function of 

the dimensionless time. 

 
 

Fig. 3 Evolution of the dimensionless enstrophy as a function of the dimensionless 

time. 



 
Fig. 4 Evolution of the dimensionless ∊1 as a function of the dimensionless time. 

 
Fig. 5 Evolution of the dimensionless ∊3 as a function of the dimensionless time. 

 



 
Fig.6   TGV solution on the finest mesh using rDGP1P2 scheme, showing 

iso-surfaces of Q criterion at time t=8.0 tc. 

 

 
                    

Fig.7 The contour of the dimensionless vorticity norm, at x = −𝞹L and t = 8.0. 

 

The simulation details and work units for such case are given in Table 1.  

 



Table 1.The simulation details and work units of the DNS of Taylor-Green vortex. 

 

Grid(Hex) DOF Time step #of cores(# of 

processes) 

Work units 

40x40x40 256,000 4.00e-04 16(32) 1332 

81x81x81 2,125,764 2.00e-04 16(32) 16202 

161x161x161 16,693,124 8.00e-05 16(32) 261483 

 
 

4.2 Laminar flow past a Delta Wing 
In this code, no-slip and adiabatic wall boundary condition is prescribed on the wing sur-

face. Tables 2 lists the number of degrees of freedom (nDoFs) per equation in the rDG 

solvers. All the cases were run on 32 processors with 16 cores. 

 
Table 2. Number of degrees of freedom per equation in the DGP1 and rDGP1P2  

schemes. 

nDOFs Mesh 0 Mesh 1 Mesh 2 

DGP1 63,252 383,440 2,697,040 

rDGP1P2 63,252 383,440 2,697,040 

 
Viscous drag and lift coefficients are computed using the second-order DGP1 method and 

the third-order rDGP1P2 method as the steady state solution is achieved. The steady state 

is achieved  while the solution vector itself stops changing. 

Figure 8 shows lift (a) and drag (b) error convergence as a function of length scale 

(h=1/(nDoFs)^(1/3) ) for the DG discretizations.  

  
  

(a) Cl error vs. length scale                                           (b) Cd error vs. length scale 

Fig.8. Convergence of lift and drag error as a function of length scale for the DGP1 

and rDGP1P2 methods in the laminar delta wing case (M=0.3, Re=4000, α=12.5°). 

 



 
 

(a)  Cl error vs. work units                                           (b) Cd error vs. work units 

Fig.9. Convergence of lift and drag error as a function of work units for the DGP1 

and rDGP1P2 methods in the laminar delta wing case (M=0.3, Re=4000, α=12.5°). 

 
Figure 9 displays a comparison of the force coefficients error convergence in terms of 

work units. It can be observed that the computational cost decreases with increasing dis-

cretization order from DGP1 to rDGP1P2. 

Table 3 lists the lift and drag coefficients computed using DGP1 and rDGP1P2 methods 

on the 3 sets of meshes, where some non-monotonic convergence is shown using such 

schemes. This behavior may be caused by different wall boundary conditions implement-

ed. 

Table 3. Force coefficients computed by DGP1 and rDGP1P2 methods in the lami-

nar delta wing case. 

Schemes Force  

coefficients 

Mesh 0 Mesh 1 Mesh2 

DGP1 Cl 0.33770726016  0.34601133389 0.34671154537  

Cd 0.17433304061  0.16729845718 0.16573001860  

rDGP1P2 Cl 0.34307235112 0.34778998428  0.34726945097  

Cd 0.17295147182 0.16703650669  0.16595970175  
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