RESTRICTED DATA ATOMIC ENERGY ACT OF 1954

ASA TM X-1763

CONFIDENTIAL

NASA TM X-1763

NASA TECHNICAL MEMORANDUM

ITEM NO. 20_

FULL-SCALE NUCLEAR ROCKET COLD-FLOW TEST FACILITY AND RESEARCH APPARATUS

by John E. Reardon Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. APRIL 1969

FULL-SCALE NUCLEAR ROCKET COLD-FLOW TEST FACILITY

AND RESEARCH APPARATUS

By John E. Reardon

RESTRICTED DATA

ATOMIC ENERGY ACT OF 1954

CEASSING OF DOCUMENT-TITLE UNCLASSIFIED This material contour information affecting the national defense of the United of the within the meaning of the espionage laws, Title 18, Un-Secs. 793 and 794, the transmission or constantion of which in any manner to an uncomorized person is prohibited by law.

NOTICE

sotisfied your requirements. It may be disposed of in accordance with your local security regulation of the appropriate provisions of the Industrial Security Security Security Classified Information.

NASA TM X-1763

C69-1251

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ABSTRACT

Descriptions are given of the apparatus and test procedure that were used in an experimental program to investigate and obtain data related to the behavior of the nuclear engine during chilldown and startup prior to generation of nuclear heat. Also documented are the research hardware and test procedure used to obtain data for a series of lowspeed turbopump mapping tests conducted at this time in the same facility. In all these tests, a radial flow turbopump was used.

THIS PAGE IS UNCLASSIFIED

general and

THIS PAGE IS UNCLASSIFIED

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
FACILITY DESCRIPTION	2
Structure	2
Altitude Exhaust System	2
Capability	2
Boiler house	3
Accumulators	3
Primary and secondary ejectors	3
Exhaust diffuser	3
Flares	3
Gaseous and Cryogenic Supply Systems	4
Liquid-hydrogen run tank	4
Hydrogen system	4
Nitrogen system (gaseous)	4
Helium system (gaseous)	5
Major Subsystems	5
Hydraulic system	5
Vacuum system	5
Hydrogen disposal system	5
Safety systems	5
Reheat system	5
${\bf Electrical\ system\ }\ldots$	5
Television, video recorder, and movie cameras	6
Control Building	6
	0
RESEARCH HARDWARE DESCRIPTION	6
	6
	7
Nozzle	8
	9
Servocontrol Systems	10
TEST PROCEDURE	11
Chilldown Tests	12
Dry pump (sequence, fig. 13(a))	12
	السنة بنكر

THIS PAGE IS UNCLASSIFIED

Wet pump (sequence, fig. 13(a)) \ldots \ldots \ldots \ldots \ldots \ldots \ldots	12
Bootstrap Tests (Wet Pump and Dry Pump)	13
Pump Tests	13
INSTRUMENTATION AND DATA ACQUISITION	14
	14
Signal transmission system	14
Research measurements	15
Data Acquisition	17
Digital system	17
Analog system	18
DIGITAL DATA PROCESSING	19
System Tests	19
Computer equipment	19
Computer program	19
Data processing procedure	20
Pump Tests	21
Accuracy Estimates	21
TEST CONDITIONS SUMMARY	23
REFERENCES	25

FULL-SCALE NUCLEAR ROCKET COLD-FLOW TEST FACILITY AND RESEARCH APPARATUS* by John E. Reardon Lewis Research Center

SUMMARY

A series of nuclear rocket startup simulation tests using a radial flow turbopump were conducted at the Plum Brook Station of the Lewis Research Center. Detailed descriptions are given of the B-3 test facility and the research apparatus used in these experiments. Also included are descriptions of the test procedure, the data acquisition systems and associated instrumentation, and the data processing procedure. Low-speed turbopump mapping tests were also made on the radial flow turbopump at this time, and the equipment and test procedure used are described in this report.

INTRODUCTION

The development of nuclear rocket systems requires definition of performance characteristics in all modes of operation, including startup conditions. Due to difficulties in making an analytical simulation of transient startup conditions, it was necessary to use a full-scale simulation of the nuclear rocket system. A series of cold-flow nuclear rocket startup tests was conducted by the Lewis Research Center. These tests were the second in a group of two experimental programs to investigate and obtain data related to the behavior of the nuclear engine during chilldown and startup prior to generation of nuclear heat. This second series of tests was conducted to obtain startup characteristics with a radial flow turbopump, in contrast to the first, which used an axial flow turbopump. The B-3 facility was used for this series of tests; the first series had used the B-1 facility.

This report presents a detailed description of the B-3 facility, the research apparatus, the instrumentation, and the data acquisition and processing systems for this series of tests.

*Title unclassified.

FACILITY DESCRIPTION

Structure

The B-3 test facility (fig. 1) is located at the NASA-Lewis Research Center, Plum Brook Station, Sandusky, Ohio. The facility is a vertical tower 200 feet (61 m) high with a base 50 by 50 feet (15.2 by 15.2 m). A 30- by 45-foot (9.1- by 13.7-m) single-story shop building is adjacent to the tower. The test stand is totally enclosed above the 74-foot (22.6-m) level with roll doors on the east, west, and south sides. These doors are rolled up during testing to provide ventilation. The research equipment is normally mounted on the third or fourth level, which are approximately 74 feet (22.6 m) and 95 feet (29 m) above grade, respectively.

The partially enclosed lower elevation houses the elevator shaft and stairwell, a pipeway, and the instrumentation and terminal rooms. The elevator has a 6000-pound (26 700-N) load capacity. A 65-ton (578.5-kN) movable crane, located at the top of the tower, can extend out over the railroad at the south side of the test facility.

The major research equipment consists of a liquid-hydrogen (LH₂) turbopump, an unfueled nuclear reactor, and an exhaust nozzle. The arrangement of the research equipment and its connection to the 40 000-gallon (151.4-m³) insulated supply tank for the systems tests is represented in figure 2 with floor elevations as noted. The reactor and nozzle, mounted on a movable carriage, are centered above a 54-inch (137-cm) exhaust duct which drops vertically down from the 74-foot (22.6-m) elevation. The exhaust duct is connected to a two-stage steam ejector (fig. 1), located 400 feet (122 m) away, which provides the altitude conditions at the nozzle exit. The valve coefficient C_v (fig. 2) is defined as flow in gallons per minute (3.785×10⁻³ m³/min) of 60^o F (289 K) water with 1.0-psi (0.69-N/cm²) pressure across the valve.

The arrangement of the equipment used for the low-speed pump tests is represented by figure 3. The pump discharge is connected through a load valve to the facility burnoff. The turbine is powered by a high-pressure gaseous-hydrogen (GH_2) supply.

Altitude Exhaust System

<u>Capability</u>. - The two-stage, steam-driven ejector system is capable of handling hydrogen weight flow from zero to approximately 45 pounds per second (20.4 kg/sec) with corresponding suction pressures from 0.5 psia (0.35 N/cm²) to atmosphere. Since the required ejector steam rate is in excess of the existing boiler capacity, a system of three steam accumulators is used to provide the required steam rates for ejector operation. The ejectors are driven at a constant steam inlet pressure which is maintained by

a pressure-regulating system between the accumulators and the ejector nozzles. Accumulator capacity presently limits the nominal run time to 4 minutes. Two additional accumulators are currently being installed which will increase the nominal run time to 7 minutes. A schematic diagram of the altitude exhaust system is shown in figure 4.

<u>Boiler house.</u> - The boiler house contains four boilers each with a capacity of 28 000 pounds per hour (12 700 kg/hr) of 500-psig ($345-N/cm^2$ gage) saturated steam. About 25 000 pounds per hour (11 300 kg/hr) per boiler are available for charging the accumulators. The remaining 3000 pounds per hour (1360 kg/hr) per boiler is used for boiler-house auxiliary systems.

<u>Accumulators</u>. - Located adjacent to the ejectors are three accumulators used for the storage of steam and saturated water at an initial pressure of 500 psig (345 N/cm² gage). Each accumulator has a 12-foot- (3.7-m-) outside diameter, 53-foot- (16.2-m-) long cylindrical section, with 3-inch (7.6-cm) foam glass insulation and a usable storage of 42 000 gallons (159 m³) of water. The three accumulators are charged in approximately 3 hours with four boilers on the line.

<u>Primary and secondary ejectors</u>. - The steam jet ejectors are driven by 150-psig $(103-N/cm^2 \text{ gage})$ steam supplied from the accumulators through a pressure-regulating system. The ejectors pump down the engine exhaust to simulate altitude conditions at the engine nozzle exit.

The first-stage steam-ejector nozzle has a throat area of 34.5 square inches (223 cm^2) ; the second-stage throat area is 134.5 square inches (868 cm²). The total steam weight flow at 150-psig (103-N/cm² gage) regulated pressure is 400 pounds per second (181 kg/sec). The ejector system pumping capacity is 10, 20, 30, and 48 pounds (4.5, 9.1, 13.6, and 21.8 kg) of GH₂ per second with exhaust nozzle exit pressures of 1.5, 4, 8, and 14.7 psi (1.0, 2.8, 5.5, and 10.1 N/cm²), respectively. The ejector system can evacuate the 7500-cubic-foot (212-m³) duct to 0.5 psia (0.35 N/cm² abs) in approximately 30 seconds.

Exhaust diffuser. - A second throat exhaust diffuser (see fig. 4) is suspended below the nozzle in the vertical leg of the 54-inch (137-cm) exhaust duct and minimizes back pressure at the engine nozzle exit. The exhaust diffuser, utilizing the kinetic energy of the hydrogen propellant, in combination with the two-stage, steam-driven ejector keeps the engine nozzle flowing full throughout most of the run. The contraction area ratio of the diffuser is 1.6, with diffuser inlet diameter of 32.5 inches (82.6 cm), and contraction angle of 6° . The length of the second throat is six times the throat diameter, and the subsonic diffuser expansion angle is 15° .

<u>Flares</u>. - To provide a controlled source of ignition for the disposal of the hydrogen from the exhaust system, six equally spaced, continuously burning, natural gas flares are mounted at the exit of the second-stage ejector.

Gaseous and Cryogenic Supply Systems

The facility can accommodate the following number of compressed gas trailers: Gaseous-hydrogen (GH_2) trailers, 8

Gaseous-nitrogen (GN₂) trailers, 8

Gaseous-helium (GHe) trailers, 4

Each trailer has a nominal capacity of 70 000 standard cubic feet (1980 m³) at 2400 psig (1655 N/cm² gage).

The facility also has permanent GN_2 bottle storage at 2400 psig (1655 N/cm² gage) with a total capacity of 300 000 standard cubic feet (8500 m³). Two 3500-psig (2420-N/cm² gage) GH₂ railcars can be accommodated. Each railcar has a capacity of 780 000 standard cubic feet (22 074 m³).

The facility is capable of handling four 6000-gallon $(22.7-m^3)$ liquid-nitrogen (LN_2) roadable Dewars in parallel. The LN_2 can be used for test runs or for prechilling the run tank. A 270-gallon-per-minute $(1.02-m^3/min)$ pump is used to transfer LN_2 from these Dewars to the run tank.

Located approximately 400 feet (122 m) from the test stand is a 200 000-gallon (757-m³) LH₂ storage tank (fig. 1) with a self-pressurizing vaporizer. The facility run tank is filled with LH₂ from the storage tank through a 3-inch (7.6-cm) vacuum-jacketed transfer line at a maximum rate of 800 gallons per minute (3.03 m³/min).

<u>Liquid-hydrogen run tank.</u> - The LH_2 run tank is mounted on top of the stand with the bottom of the tank approximately 115 feet (35 m) above grade. The tank has a usable capacity of approximately 40 000 gallons (151.4 m³).

The tank consists of two coaxial vessels with 12 inches (30.5 cm) of foam glass insulation on the outside of the inner vessel. The tank discharge is a 12-inch (30.5-cm) to 8-inch (20.3-cm) transition section terminated by an 8-inch (20.3-cm) ball valve. The overall height of the tank is 24 feet, 11 inches (7.59 m), with a maximum diameter of 23 feet, 9 inches (7.24 m). A general representation of the tank including instrumentation is shown in figure 5.

The tank is filled through a 3-inch-diameter (7.6-cm-diam) vacuum-jacketed line. Gaseous hydrogen is used to pressurize the run tank through a 3-inch-diameter (7.6-cm-diam) line. The working pressure of the tank is 85 psig (59 N/cm² gage), with a test pressure of a 106 psig (73 N/cm² gage).

<u>Hydrogen system</u>. - The LH_2 and GH_2 systems are shown in figure 6. Liquid hydrogen is used as the propellant and gaseous hydrogen is used for tank pressurization and turbine drive supply.

<u>Nitrogen system (gaseous)</u>. - The permanent GN_2 storage is used to purge the large exhaust duct. The trailers are used for pneumatic valve control and purging of the burn-off line, the terminal cabinets, and the non-explosion-proof electrical equipment. The GN_2 system is shown in figure 7.

<u>Helium system (gaseous)</u>. - The GHe system is used for purging the pump, the reactor, and the associated piping in the liquid-hydrogen system. It is also used for purging camera viewing ports and run-tank insulation to prevent formation of frost or liquid air. Gaseous helium is also used to purge the burnoff system. The GHe system is shown in figure 8.

Major Subsystems

<u>Hydraulic system.</u> - Hydraulic operated servovalves are used to maintain and control the desired operating conditions throughout the research facility. The hydraulic system used to operate these valves consists of two independent variable displacement pumps each capable of pumping 37 gallons per minute (0. 14 m³/min) at 3000 psig (2069 N/cm² gage). Should one pump fail, its portion of the load is immediately taken by the other, which has been operating in parallel and sharing the load with the first pump.

<u>Vacuum system</u>. - The 40 000-gallon (151.4-m³) run tank, the LH₂ pump, and all the LH₂ transfer lines are connected to a 750-cubic-foot-per-minute (21.2-m³/min) mechanical vacuum pump. The vacuum pump can evacuate these systems to 50 micrometers of mercury (50×10⁻³ torr). A gaseous-helium purge is used to break the vacuum and inert the systems prior to loading LH₂.

<u>Hydrogen disposal system</u>. - An 8-inch-diameter (20.3-cm-diam) line runs from the pump discharge level to ground elevation, where the line diameter increases to 14 inches (35.6 cm), and out to an ignition system located 315 feet (96 m) from the facility (fig. 1). The burnoff will handle 200 pounds per second (90.7 kg/sec) of LH₂. The burnoff is used to dispose of the hydrogen flow through the pump during pump chilldown and as a discharge line for pump tests.

<u>Safety systems</u>. - The facility has a network of fire and GH_2 detectors which are connected to an annunciator alarm system in the control room. An oxygen analyzer is used to monitor the oxygen level in the exhaust duct after it has been made inert and prior to research operations.

<u>Reheat system</u>. - A GN_2 reheat system (fig. 6) is used to bring the research equipment back to ambient temperature as soon as possible after a test run. A heat exchanger that used the facility hot-water heating system supplies the necessary heat. As a result, two cryogenic tests can be conducted on the same day, thereby resulting in more efficient operation.

<u>Electrical system</u>. - All test runs are remotely controlled at B control building located 3000 feet (914 m) away. The test facility is connected to the control building through a series of externally shielded underground cables. These cables are used to operate all subsystems including the LH_2 storage tank. Power at the control building is

used to operate relays at the test stand which, in turn, apply test-stand power to the device being operated.

Servovalves are connected through shielded cables running from cabinets on the 95-foot (29-m) level in one continuous line to the control building where the servoamplifiers are located.

<u>Television, video recorder, and movie cameras</u>. - To aid the control room operators in conducting a test run, television coverage of the trailer area, the secondary steam ejector, and the research apparatus is provided. The television cameras have multilens turrets and pan and tilt features which are remote controlled. Motion picture photography provides documentary coverage of the area when desired. Information on the various television monitors in the control room can be recorded by selective switching to the video tape recorder.

Control Building

The B control building is a reinforced concrete structure containing several control rooms for the B facility group. Through the transmission cables and appropriate circuitry, all the B-3 test runs are conducted from this building.

The B-3 control room is U-shaped with 14 control cabinets on a side and 12 in the center. The test conductor's control panel is located in the middle of the U and is flanked on one side by the facility-subsystems control panel and on the other side by the steam-system control panel. With the aid of a graphic panel and closed-circuit television, one man can operate each of these control panels. The annunciator and safety-system control panels are also located in the center section.

The cabinets on the right side of the control room contain meters and instrument recorders for monitoring critical research parameters during a test run. An events recorder is also mounted in these cabinets and is used to set up the automatic timers prior to a run and to record valve positions during the test.

The cabinets on the left side of the control room contain the servovalve control equipment and an automatic programmer for the servovalves.

RESEARCH HARDWARE DESCRIPTION

Turbopump

Figure 9 is an illustration of the Mark III, Model 4 turbopump used in the system startup and low-speed pump mapping tests. The pump is a radial flow, centrifugal type

with an integral three-blade helical inducer. It is capable of providing a LH_2 flow of 76 pounds per second (34 kg/sec) at 1000-psi (690-N/cm²) pressure with a minimum of 7-psi (4.8-N/cm²) net positive suction pressure.

The turbine is a two-stage, pressure-compounded, impulse type with inlet design conditions of 440 psia (303 N/cm² abs) and 1200° R (666 K).

The pump impeller and turbine blades are cantilevered at opposite ends of a common shaft supported in the center by two roller and two ball bearings. This arrangement makes the use of an external torque-measuring device impossible. The bearings are lubricated and cooled with LH_2 which is bled from the pump discharge. After passing through the bearings, the coolant flow is mixed with the turbine supply gas. Polystyrene beads were used for insulating the turbopump assembly during these tests.

The Mark III, Model 4 turbopump is an Aerojet design and meets the NERVA I-type engine requirements. It was used in the ground demonstration tests of a fueled NERVA engine (NRX/EST).

Reactor

The reactor (fig. 10) used on this series of tests was transferred, without disassembling, from the B-1 facility where the first series of cold-flow nuclear rocket startup tests was conducted as described in "Nuclear Rocket Simulator Tests. Facility and Research Apparatus Description," coordinator, Donald D. Lacy of Lewis Research Center. It is basically the same as the Kiwi B-1-B reactor used in the ROVER program. However, certain modifications and compromises to the hardware design had been made to effect economy in fabricating while still satisfying the particular cold-flow test requirements. The various-diameter coolant passages in the graphite fuel elements were averaged to a single diameter, thereby providing the same total flow area as in the Kiwi B-1-B reactor. Additionally, the extruded-graphite-fuel-element coolant passages were not coated with niobium carbide nor were the elements loaded with uranium. The material of the reflector is aluminum rather than beryllium. Aluminum has approximately the same cooldown rate as beryllium for these cold-flow tests, is much less expensive, and is easier to machine. The simulated control rods and poison plates are aluminum, and no provision is made for their external movement by actuators as in the Kiwi hardware. The aluminum pressure vessel is provided with twelve $1\frac{7}{8}$ -inch-diameter (4.76cm-diam) viewing ports, six each at the planes of the reflector inlet and the reflector outlet. These ports allow visual recording, by high-speed motion picture and/or television camera, of the qualitative condition of the propellant passing through the reflector system.

CONFIDENTIA

The reactor components were supplied to Lewis by a contractor for the U.S. Atomic Energy Commission. Upon receipt and inspection of the various components, extensive pressure and temperature instrumentation was installed prior to final assembly.

Nozzle

A tubular-wall nozzle regeneratively cooled by LH_2 (fig. 11) is used for this series of tests. This nozzle, designated RN-2-007, has a contraction ratio of 17.3 to 1, an expansion ratio of 12 to 1, an axial length of 58.02 inches (147.4 cm), and a maximum diameter of 40.88 inches (103.8 cm) at the nozzle flange. The inside diameter at the reactor end is 36.25 inches (92.08 cm), the throat diameter is 8.72 inches (22.15 cm), and the exit inside diameter is 30.21 inches (76.73 cm).

The tubular-wall nozzle, designed by Rocketdyne for the Kiwi reactor, is fabricated from 180 geometrically similar tubes and utilizes single-pass cooling. The LH_2 enters the nozzle tubes through three equally spaced inlet connections on the manifold located at the exit end of the bell-contoured expansion and flows upward toward the reactor end. The formed and tapered tubes are made of nickel-based alloy material with a constant wall thickness of 0.009 inch (0.023 cm). For the majority of their length the tubes have an octagonal cross section, except for an elliptical cross section in the vicinity of the throat. The cross section changes from round ends at the fuel inlet manifold, to the octagonal cross section, and to square ends where the tubes join the reactor end ring.

A continuous shell, which extends from the reactor end of the nozzle to the throat and provides the necessary external structural support, is made of a nickel-based alloy surrounding the tube bundle and forming an integral assembly. There is a shell leakage collector connection at the throat which is piped through a check valve into the facility vacuum-exhaust system. Bands made from the same material as the shell surround the tubes in the divergent region of the nozzle. Normally, hydrogen coolant passes into a flange manifold and through holes drilled through the center of the bolts into the reactor pressure vessel. However, for these tests there were no holes in the bolts that were used, and the LH₂ coolant flowed directly to the reflector inlet instead of through the nozzle flange manifold.

Several openings were cut into the convergent section of the nozzle in such a manner that the coolant flow was redirected around the ports. The bleed port (fig. 11) diverts some of the hot (warm) GH_2 from the chamber to power the turbine. The camera-light port (fig. 11) was used to view the reactor-core exit face during the tests.

OONELDENITLA

8

Propellant Ducting

The 8-inch (20.3-cm) pump inlet line from the tank shown in the original arrangement in figure 2 is the configuration used for the system cooldown tests and the initial pump tests. However, at a LH₂ flow of about 30 pounds per second (13.6 kg/sec), the second 4-inch (10.2-cm) volumetric flowmeter cavitated. The alternate arrangement of an 8-inch (20.3-cm) volumetric flowmeter in series with a 4-inch (10.2-cm) meter was substituted for the final pump tests and all the system bootstrap tests. The tank shutoff valve (TSOV) is an 8-inch (20.3-cm) straight-through ball valve. The propellant shutoff valve (PSOV) is an 8-inch (20.3-cm) butterfly valve. A combination of polyurethane foam or beads of a similar composition is used to insulate the entire length of the line.

The pump discharge line (fig. 2) is a nominal 4-inch-diameter (10.2-cm-diam) pipe connecting the pump to the nozzle inlet "spider." The line is divided into two parts separated by the pump main discharge valve (PMDV), which is a 4-inch (10.2-cm) butterfly valve.

The upper horizontal portion of the line contains pump discharge instrumentation, a mass flowmeter, and a bypass port terminated by the LH_2 bypass valve (LHBV), a 2-inch (5.1-cm) butterfly valve.

During the ''wet-pump'' tests, the inlet line, the pump, and the pump discharge line to the PMDV are prechilled to LH_2 temperature. The boiloff is ducted to the facility burnoff through the LHBV.

The lower horizontal portion of the line contains a motion picture viewing port (Station E) and a capacitance-type density meter just upstream of the nozzle spider. During the last test, a nuclear-type density meter was installed in place of the capacitance-type meter which was then installed just downstream of the PMDV. The entire pump discharge line is insulated with 4 inches (10.2 cm) of polyurethane foam.

The nozzle spider connects the pump discharge line to the nozzle inlet manifold. The spider consists of three $2\frac{3}{8}$ -inch-diameter (6-cm-diam) ducts with approximate lengths of 45 inches (114 cm), 46 inches (117 cm), and 30 inches (76 cm). Portions of the nozzle spider are shown in figure 12.

The pump discharge line used for pump mapping is shown in figure 3. Nominal 4-inch (10.2-cm) stainless-steel piping connects the pump discharge to the pump load valve (PDLV). The 4-inch (10.2-cm) plug-type load valve is bypassed with an orifice to prevent dead-heading the pump if the valve closed. Pump flow is measured by means of a turbine-type flowmeter.

The turbine line connects the bleed port of the nozzle chamber to the turbine inlet on systems tests (fig. 2). The line is a nominal 4-inch (10.2-cm) stainless-steel pipe 24 feet (7.31 m) in length, and includes a turbine power control valve (TPCV), 4-inch (10.2-cm) butterfly type, for regulating the flow to the turbine and a venturi for measur-

CONFIDENTIAL

ing this flow. The hot (warm) GH_2 from the chamber is used to power the turbopump, thereby producing more hydrogen flow into the chamber in a regenerative cycle referred to as a bootstrap operation.

The turbine line used on the pump mapping tests connects a high-pressure, ambienttemperature GH_2 supply to the turbine. The high-pressure-gas-supply railcar is positioned at the base of the test stand; it included a gas-supply pressure regulator. It is connected by approximately 135 feet (41.1 m) of 5-inch (12.7-cm) schedule-80 stainlesssteel piping to the pump elevation level (94 ft, 6 in. (28.8 m)) where a filter and a facility shutoff valve are located. The turbine inlet line at the pump level connects the shutoff valve to the turbine (fig. 3). It is a 3-inch (7.6-cm) stainless-steel pipe, 34 feet (10.4 m) long, containing a plug-type turbine power control valve (TPCV) to regulate turbine flow rate and a venturi to measure the flow rate.

Figure 12 shows the insulated hydrogen feedline, the nozzle, and the bottom of the reactor as they are mounted in the test stand.

Servocontrol Systems

Several servocontrol loops are used on the research hardware to obtain and maintain the desired test conditions. A tank-pressure controller is used on the tank ullage pressure above the LH_2 in the run tank. The controller receives a signal from a pressure transducer on top of the tank, compares it with the demanded pressure, and positions the vent or pressure value to minimize the error. The system is capable of maintaining a tank pressure within 0.25 psi (0.17 N/cm²) of desired pressure.

Turbopump speed is controlled with a closed-loop speed controller on the TPCV. The controller receives the speed signal which originates with the speed transducer on the turbopump, compares it with the set speed, and makes necessary adjustments to the TPCV. The speed is maintained within ± 50 rpm of the desired level.

The pump discharge load valve (PDLV) on the low-speed pump tests and the PSOV, PMDV, and the LHBV on the systems tests are used in the open-loop-position-control mode.

A ten-channel paper tape input programmer with analog output is used to automatically set desired servocontrol systems demands so as to obtain necessary test conditions. It has additional functions, such as starting the recorders, the cameras, and the digital data acquisition system for each test.

CONFIDENT

A day before the test, the main exhaust duct is evacuated, purged with GN_2 , and isolated. At this time the LH_2 run tank is also evacuated, and it is filled with GHe until the day of the test.

On the day of the test, the prerun procedure consists of system cleanup (accomplished through several vacuum-evacuate, GHe-purge, or GN_2 -purge cycles), filling of the run tank, chilldown of the flowmeters, and also chilldown of the pump when the test requires it. During this cleanup phase and before the run tank is filled with LH₂, the system is vented to within 1 inch (2.54 cm) of water (referred to atmospheric conditions). In general, GHe is used for purging the parts of the system through which LH₂ flows, and GN_2 is used for those parts where GH_2 would be present.

Tests on the data acquisition system begin two days before the test and are made primarily on the subsystem located in the B-3 facility. The analog-to-digital converter is checked for zero and span adjustments on the ranges used for each of its 400 channels.

The instrumentation tests at this time include zero drift and full-scale checks of pressure transducers. Resistance temperature probe checks at the low- and high-temperature values are also made. Zero and span adjustments are made in the trans-ducers signal-conditioning circuitry. If required, transducers are replaced at this time. Pressure transducers are checked again on the day of the test and adjusted for zero drift caused by effects of atmospheric pressure changes.

The run programmer and timers are also set up two days prior to the test for the sequence to be used on the test. All supporting systems operations are verified at this time.

The morning of the test day, additional noise checks are made on the data acquisition equipment. Volumetric and mass flowmeter electronics are checked by substituting signal test frequencies to obtain required outputs on the adjustable ac-to-dc converters. The capacitance-type density-measuring system is calibrated by adjustments at the detector and at the electronics designed to compensate for stray capacitance. The new values of capacitance at the output of the detector, corresponding to 0 and 100 percent quality, are then recorded for data processing purposes. A separate, substitute capacitor at the detector is adjusted to simulate 100 percent quality when switched to the electronics during electrical calibrations.

Electrical calibrations of instrumentation are made twice for the data acquisition system: first, at prerun time after system cleanup when the system is vented within 1 inch (2.54 cm) of water, and again a few minutes before tests when a similar condition exists in the entire research system except for the chilled down flowmeter and pump during wet-pump tests.

·····

OCNITENTIA

The following types of tests were made: bootstrap tests, both wet and dry pump; chilldown tests, wet and dry pump; and pump tests (wet pump). These are described in further detail in this TEST PROCEDURE section. The time history of events produced by the automatic run sequencer for these tests is shown in figures 13(a) and (b). The sequencer or programmer was described previously in the Servocontrol Systems section.

The solid lines in figure 13(a) apply to a dry-pump chilldown test. A typical drypump bootstrap test is practically identical except for the TPCV. The small-dashed lines in figure 13(a) illustrate the sequence for a wet-pump chilldown test. A wet-pump bootstrap test would include operation of the TPCV as shown for a typical test by the largedashed line in the figure. Time zero (t = 0) on all these runs corresponds to the time when the valve (either PSOV or PMDV), controlling propellant flow through the system, begins opening.

Figure 13(b) is a simplified automatic run sequencer diagram for the pump tests. Time is shown to indicate approximate length of test time at each speed.

The experimental tests made in each category are described in detail in the following sections, followed by a brief description of the shutdown procedure common for all tests.

Chilldown Tests

<u>Dry pump (sequence, fig. 13(a)).</u> - The sequence of valve openings, closing, etc., during the test is shown in figure 13(a), and the test procedure is as follows. The TPCV (see fig. 2) is closed. The pump inlet flowmeters are chilled by closing the PSOV and opening the TSOV while the run tank is being filled. The LHBV is closed, and the PMDV is opened. A final electrical calibration is taken before the steam-driven ejector system is started. The ejector evacuates the nozzle, the reactor, the turbopump, and the facility exhaust system. When the nozzle exit pressure at the exhaust duct reaches 1 psia (0.7 N/cm^2) , the test run is initiated by starting the run programmer. This occurs 40 seconds before the propellant starts flowing through the system or at t = -40 seconds.

Tank pressure is ramped up to its set point; the digital data acquisition system and various recorders, including the FM magnetic tape recorders, are switched on. At time t = 0, LH₂ flow is started through the system by controlled opening of the PSOV. At this time the exhaust duct pressure has been reduced to 0.5 psia (0.35 N/cm²). Station E and reflector inlet cameras are started after initiation of hydrogen flow. A test is terminated when the operator initiates the shutdown sequence.

Wet pump (sequence, fig. 13(a)). - The pump was chilled by flowing LH_2 from the run tank through the pump, including its associated piping, and to the PMDV. Liquid hydrogen was discharged through the LHBV and out the burnoff stack (fig. 2). The LHBV

CONCLOSING

was left open until just before the test started, for venting the LH₂ in the pump discharge piping.

After pump chilldown is completed, a final electrical calibration is taken. An identical procedure to that used on the dry-pump tests is followed for evacuating the system. When the exhaust duct pressure reaches 1 psia (0.7 N/cm^2) , the test run is initiated by starting the run programmer. Forty seconds later, after reaching the desired run tank pressure, etc., LH₂ flow is started by opening the PMDV. The test is terminated when the operator initiates the shutdown procedure.

Bootstrap Tests (Wet Pump and Dry Pump)

Flow to the turbine is obtained from a "hot-gas" bleed port at the nozzle chamber and controlled by the TPCV (fig. 2). The turbine exhaust is discharged into the altitude exhaust system. The typical bootstrap test procedures are basically the same as those for the corresponding wet- and dry-pump chilldown tests with the additional TPCV opening at the start of or during the run (see large-dashed line fig. 13(a)). Bootstrap, as used herein, means that the power required to drive the turbopump during startup was obtained from the internal (thermal) energy of the engine system components. Shutdown is generally initiated soon after the turbopump has reached its maximum speed.

Pump Tests

The turbine inlet is connected to the facility high-pressure-hydrogen-gas system through the TPCV used for pump tests (fig. 3). The turbine exhaust is discharged into the altitude exhaust system. The pump discharges to the facility burnoff through the PDLV. The pump and the pump discharge piping are chilled by flowing LH_2 through the pump, the pump discharge piping, the PDLV, and the connecting piping to the burnoff stack. The ejector system is operated at very low steam flow rates to maintain a positive flow of hydrogen gas at the second-stage discharge, thereby clearing the turbine exhaust ducts of hydrogen.

After chilldown of the pump is completed, the test is initiated by starting the run programmer. A simplified sequence of events is shown in figure 13(b). Tank pressure is programmed to a desired value (35 or 50 psia (24 or 35 N/cm^2)). The PDLV is set at a predetermined opening. Turbopump speed is ramped to, and controlled at, a desired value by the TPCV and its associated control. The PDLV is closed in predetermined steps so as to vary flow and pressure rise. Generally, not more than nine steps are required per speedline to accurately define the head map, including the stall region. At the

conclusion of the test, the operator initiates the shutdown procedure.

Shutdown includes programmed closing of the valves and automatic sequence purging of exhaust duct, nozzle, reactor, and pump. It is generally initiated by using a manually activated shutdown sequencer, but automatic shutdown is also available from safety monitoring devices.

DENTLA

Postrun checks include zero and span checks of the pressure transducers to determine if any pressure data should not be processed. Pump rotational checks and checks of any problem areas arising, particularly in the instrumentation, are also made.

INSTRUMENTATION AND DATA ACQUISITION

The instrumentation system consists of all necessary components from the sensing point to the data acquistion and recording equipment. The type and location of sensors required to measure various parameters, such as temperature, pressure, and flow, are described. The digital and analog data acquisition systems are also described.

Instrumentation

<u>Signal transmission system.</u> - The signal transmission system includes wiring, etc., in several areas.

B-3 test stand: The cable termination cabinets located at the 74-foot (22.6-m) level of the B-3 test stand contain the thermocouple reference junctions, all with 150° F (339 K) references. A capacitive-type liquid-level system (fig. 5) in the propellant tank has its associated signal-conditioning equipment located in these same cabinets. Cables for strain gages, platinum resistance thermometers, density meters, and flowmeters also terminate in these cabinets. From the cabinets, shielded cables go directly to the signal-conditioning equipment and the program board located in the terminal room at the base of the test stand.

The terminal room contains a program board which ties all the research apparatus instrumentation to the data acquisition equipment. The terminal room also contains signal-conditioning equipment, a scanner system, and the low-level multiplexing sub-system.

Pressure transducer signal conditioners, platinum resistance thermometer electronics, frequency-to-dc electronics, and dc differential-type amplifiers are included in the terminal room cabinets.

The scanner system is a self-contained, data logging unit. By selecting a desired channel, the output signal can be indicated in digital voltage form or in digital resistance form, or it can be displayed on an oscilloscope. The resistance and voltage measure-

CONFIDENTIA

ments can be compared with a reference signal and printed in digital form on a paper tape. Any instrumentation channel can be connected to the scanner system by way of the program board. A television camera is installed to give visual coverage of the scanner from the control room.

All the cables (signal transmission cables, amplifiers, signal conditioners, etc.) from the top of the test stand (94-foot (28.7-m) level) are connected to the program board. The scanner system is connected to the program board by means of another patch board to check any instrument channel under test.

B-3 control building: From the program board in the test stand, the high-level instrumentation signals are sent to a similar patch board in the control room by means of cables which are both magnetically and electrostatically shielded. The low-level signals coming from the program board are connected directly into the analog-to-digital converter and multiplexer at the test stand, then transmitted through two coaxial cables to B control building. These cables follow the same path as the control cables but are in a separate conduit in the underground ducts and are supported at a different level on the transmission poles.

After the low-level-signal coaxial cable arrives at the control building it is "patched" to the data acquisition and recording building (H building) through one coaxial cable. The high-level signals arrive at the control room through the B-3 control patch board and are sent to various types of analog recording equipment in the control room. The data to be recorded on FM tape are sent to H building through the same patch board. In general, the only data recorded at this point, the control room, are parameters that pertain to the status of the test.

Dual-pen strip-chart recorders, high-response vacuum-tube voltmeters, and two eight-channel pen-type oscillograph recorders indicate instantly the progress of the test run. Immediately after the test a few important higher-frequency data channels can be analyzed from chart recordings made by two multichannel light-sensitive oscillograph recorders.

H building: The detailed analog and digital recording of experimental data is performed in the H building. The signals are transmitted through four continuing instrumentation cables and a coaxial cable connecting the B control building and H building. The instrumentation cables terminate at a patch board in the H building. From this point, the signals are switched into the analog recording equipment. The coaxial cable carrying the digital signals is terminated at a coaxial switching terminal. From the terminal, the coaxial line is switched to the 30-kilohertz digital recording system. This system is discussed in detail in the section Data Acquisition. A block diagram of the facility instrumentation is shown in figure 14.

<u>Research measurements.</u> - Research measurements are made at many points in the research apparatus and include use of various sensors, etc.

Measurement points in research apparatus: The research equipment was extensively instrumented, as shown in figures 4, 5, 11, and 15 to 32. Each figure presents in detail the type, the position, and the location of each data sensing point. ¹ The instrumentation item, description, and location of each measurement are listed in table I. There are a total of about 875 measurements that can be made on the research hardware, but only approximately 350 measurements were recorded for any one test.

Description of transducers, thermocouples, camera, etc.: Several types of transducers are used to measure temperature, pressure, speed, flow, vibration, and density.

Platinum resistance temperature sensors are used for measuring fluids at cryogenic temperature. Signal-conditioning equipment provides proper signal voltages for the analog and digital recording systems. Good response and accurate cryogenic temperatures are characteristics of this type of temperature measurement.

The pressure transducers are of the bonded and unbonded strain-gage type. Signalconditioning equipment provide zero set and span control for appropriate recording voltages.

Copper-constantan thermocouples are used in many of the temperature measurements. For a large number of metal temperatures, copper-constantan wires were formed in a round bead and embedded in the metal. On the nozzle tubes, the thermocouple junction is welded. For installation of thermocouples in graphite, the point junction is installed in a drilled hole, and a graphite mixture is packed around the wires. For nozzle chamber fluid-temperature measurement, copper-constantan thermocouples are secured by cement in steel tubes projecting into the liquid flow path. Iron-constantan, chromel-constantan and chromel-alumel thermocouples are also used to measure temperatures.

Piezoelectric-type transducers and their associated electronic equipment provide vibration data on the research apparatus.

Turbine-type flowmeters are used for LH_2 flow measurements and venturis for gas flow. The capacitive-type liquid-level gage in the propellant tank is also used to indicate integrated flow.

A "mass meter" was located at the discharge side of the pump to measure mass flow rate of the liquid hydrogen. It operates on the principle of conservation of angular momentum. A rotating permanent magnet exerts a constant torque on the turbine rotor. Rotor speed is inversely proportional to mass flow rate and is measured by a speed pick-

¹In most of these figures (except fig. 21) a particular convention was used to designate the pipe angles at which the transducers are located (i.e., 0° reference corresponds to the outermost flow edge on the pipe; and the angle increases from 0° reference by a counterclockwise rotation that is viewed in the direction of flow, or downstream).

up signal. The period (time between cycles, or 1/rpm) of the meter is directly proportional to mass flow rate.

Two electromagnetic-type pickups are mounted close to a tooth gear on the turbopump shaft for speed measurement.

Near the downstream end of the pump discharge line at station E, a grid-type capacitance density meter is used to measure the density of hydrogen into the nozzle spider. Another grid-type capacitance density meter was used on the pump inlet line.

On the last test, the station $E LH_2$ capacitance density meter was replaced by a nuclear density meter. This meter operates on the principle that density is inversely proportional to the log of the beta particles transmitted through the fluid to the detector.

Both high- and low-speed motion picture cameras are used for a pictorial recording of the quality of the propellant. Variable frame rates of 1000 to 18 000 pictures per second on a 400-foot- (122-m-) capacity reel and 1000 to 3000 frames per second on a 1200-foot- (366-m-) reel are available for obtaining the desired data.

A video tape recorder was used to record pertinent pictures observed on any one of eight television monitors in the control room.

Data Acquisition

Data acquisition included a digital data acquisition system and analog devices such as FM magnetic tape recorders and various oscillograph recording systems.

<u>Digital system</u>. - The digital data acquisition system consisted of a central record train, located in the H building data acquisition area and a subsystem located at the B-3 test stand. This 400-channel subsystem, located in the test-stand instrument room digitizes the low-level instrumentation signals and transmits them to the central record train. One coaxial cable continually sends commands from the central record train to the subsystem. A second coaxial cable transmits serial digital data from the subsystem to the record train.

Features of the system include variable sampling rates from 2 to 31.25 kilohertz, programmable sampling pattern, programmable gain on each channel, IBM format magnetic tape output, variable-speed playback, automatic noise checking, and multiple online or off-line digital-to-analog outputs. For these tests the 400-channel subsystem uses three different sampling rates. Seventy-five channels are measured at 200 times per second; 25 channels at 100 times per second; and three hundred channels at 25 times per second. The digital data acquisition system accuracy is better than 0.25 percent of full scale on any of its ranges. Overall instrument system noise from transducer to recorded data is less than 0.5 percent full scale on each channel.

SONFIDENTIAL STAR

The central record train consists of numerous cabinets of logic circuits, displays, and controls. Major sections of the equipment include the following:

- (1) An instruction pattern memory (1000 words)
- (2) A data buffer memory (2022 words)
- (3) Fifteen digital-to-analog converters
- (4) Playback and tape-copy facilities
- (5) A paper tape pattern reader
- (6) A paper tape punch
- (7) A printer
- (8) PCM-PAM code transmitting, receiving, and decoding circuits
- (9) Two CDC tape handlers for IBM 556-bit gapped format, 150 inches per second (38 cm/sec)

The subsystem at the B-3 test stand includes the following:

- (1) A 400-channel low-level analog voltage multiplexer
- (2) A 12-bit analog-to-digital converter
- (3) A digital-to-analog converter
- (4) A storage-type oscilloscope and display
- (5) A local mode instruction data simulator and PCM-PAM code transmitting, receiving, and decoding circuits

<u>Analog system</u>. - The analog system includes FM tape recorders, direct-writing oscillographs (pen-type and light-sensitive type), and strip-chart recorders. The low-level transducer signals, which are to be recorded, are amplified in the terminal room at the test stand and transmitted on cables; or the transducer signal can be ''played back'' by means of the digital-to-analog conversion unit in the 30-kilohertz recording system.

The FM system is capable of recording 28 channels of high-frequency analog signals by modulating a carrier and recording the modulated signal. The accuracy of the recorded signal is better than 2 percent of full-scale voltage; the frequency response of the system is $\pm 1/2$ decibel from 0 to 10 000 hertz.

Six light-sensitive multichannel direct-writing oscillographs are used. High-frequency galvanometers permitted oscillations as high as 3000 hertz to be recorded. Two eight-channel, direct-writing, pen-type oscillographs are in use with a maximum full-scale frequency response of 58 hertz and 1/2 percent full-scale linearity.

The strip-chart (potentiometer-type) recorders have variable inputs and are used, in general, to record facility parameters.

CONCLOCATE

DIGITAL DATA PROCESSING

Different computers and computer programs are used in the processing of system test data and low-speed turbopump mapping data. The system test data processing includes plotting data on chart paper in high-resolution form, in addition to printing data on listing sheets as with pump test data. The following paragraphs present descriptions of the programs, the processing, and the computers used for both types of test data.

System Tests

<u>Computer equipment</u>. - The data processing equipment used to retrieve data from the system test data tapes includes an individual computer for retrieval and conversion of data to a format compatible with the IBM 7094 computer used for processing the data. Auxiliary to the retrieval computer is a data playback and display system used with a storage-type oscilloscope for editing. A high-speed digital incremental plotter is used to obtain high-resolution data plots.

<u>Computer program</u>. - Programming used for system tests during the processing of data includes several areas.

Calibration and conversion: Instrument calibrations are used to adjust measurements for systematic errors, such as instrument drift and line losses in the transmittal of the signal to the recording system. Electrical calibrations recorded just prior to the test are used to make these adjustments. Average values of the high voltage and the low voltage recorded during the electrical calibration for each channel are determined to eliminate extraneous voltage transients and are used as the calibration points.

For all measurements, such as pressure, where the measured value in engineering units is a linear function of the measured voltage, a two point high-low calibration is used. Electrical calibrations utilize 0 and 100 percent full-scale simulated signals to determine the slope and intercept of the calibrated straight line and subsequent converting of recorded voltage to engineering units.

For those measurements which are nonlinear with respect to voltage, one voltage calibration point is used to simulate a known measurement. The difference between the average value of the recorded voltage and the simulated voltage signal is assumed to be the error in every measured voltage, and this error is added before converting to engineering units.

The conversion from voltage to engineering units where there is a nonlinear relation uses curve fits of engineering units against voltage. These curve fits are made from calibration data for each transducer and stored in the program. The corrected measured voltage is substituted into the curve-fit equations to obtain the value in engineering units.

Averaging: The 400 data-measurement channels were measured at three different sampling rates: 75 channels were measured at 200 times per second; 25 channels at 100 times per second; and 300 channels at 25 times per second. The 200- and 100- samples-per-second channels used a weighted average based on a cubic fit of the data. All 400 channels were outputted at a 25-times-per-second rate.

Digital incremental plotter programming: This programming included necessary instructions to this plotter to assign time scales, to group and scale parameters on a chart, and to provide basic operating instructions to the plotter.

The plotter transfers engineering unit data graphically to the chart paper. The plots are a high-resolution type with a possible 0.5 percent resolution of the full-scale parameter. Time-scale resolution is at least 0.4 percent for a 10-inch (25.4-cm) length of chart.

Terminal calculations: These calculations are those which use output data in engineering units, such as calculations of fluid-flow and heat-transfer parameters. Thermodynamic and transport properties required for these calculations are available in a parahydrogen properties subroutine (BWR) based on the modified Benedict-Webb-Rubin equation of state and related equations from references 1 and 2.

The program for processing system test data is prepared in advance of the tests by the programmer who has obtained calibration data, terminal equations, material properties, and special digital plotter instructions from the engineer. The necessary hydrogen properties subroutine is also used, with the plan or correction cards made for each test, as input to the 7094 for data processing.

<u>Data processing procedure</u>. - The data taken from the digital recording system at the test station are brought to Lewis for processing on the 7094 computer. A copy of the original data tape is made, and the original tape stored (fig. 33; steps 1 to 3). A storage-type oscilloscope and magnetic tape reading equipment are used to retrieve the data (step 4). In this way, calibration and run data are checked for electrical noise, shorts, and other flaws in the recorded signals.

The magnetic data tape is used as the input to the retrieval computer for the retrieval process (step 5), that includes parity error checks for flaws in the recording system.

The engineer submits to the programmer data processing instructions which consist of the input particular to each run(fig. 33, step 6). The input includes areas of data to be processed, measurements to be coded out, calibration instructions, and any minor changes required in the terminal calculations due to changes or flaws in the recording instrumentation.

This information and the engineering units program is then used, with the retrieved data tape, as input to the 7094 (fig. 33, steps 6 and 7).

CONFIDENT

The engineering units data tape output of the 7094 is used to print data listing sheets (step 8) and to produce the digital plotter instruction tape (step 9) which controls operation of the Cal-Comp plotter (step 10).

The engineering units data tape is also used, along with the terminal calculations program to produce a terminal calculations tape (fig. 33, step 11). It is used similarly to the engineering units data tape to produce listing sheets and Cal-Comp plots (steps 12 to 14). Information for advanced terminal calculations was included on the terminal calculation tape and processed to produce another tape (step 15) used for printing a listing sheet (step 16).

Pump Tests

The equipment for these tests comprised a different computer for retrieval and data processing but the same editing and printout equipment as used on the system tests, except for the digital incremental plotter. Low-resolution plots of the pump parameter calculations were printed out with the engineering-unit data listing sheets.

The computer program was similar to that for the system test program except for the following:

(1) Straight averaging of data was utilized. One hundred points per second were measured; nine samples were used to compute an average; and data were then printed out in engineering units every 0.1 second.

(2) Turbopump parameters were calculated based on output data and pump equations furnished by the engineer to the programmer.

(3) The programmer used the appropriate digital computer calculations subroutines, the necessary hydrogen properties subroutines, and engineering requirements to punch the program on tape (fig. 34, step 6). It was used with the plan or correction tape for each test as input to the computer for data processing (step 7). The same references as for material properties (refs. 1 and 2) were used.

Calibration and conversion techniques were the same for pump and system tests. The data processing procedure was similar to that of the system tests. Figure 34 is a schematic of the data processing procedure, the steps of which are labeled 1 to 8 and are self-explanatory.

Accuracy Estimates

The accuracy estimates for all measurements include estimates of errors inherent in the sensors themselves, line noise, and error in the digital data acquisition system.

CONFIDENTIAL

Data processing errors are included only when significant. The noise errors in the line and recording system measured for each channel before the run are less than 0.5 percent (peak-to-peak) of full scale.

The errors associated with pressure transducers include a hysteresis effect, nonlinearity, temperature shift, and zero shift. The zero shift is eliminated in data processing by use of the prerun electrical calibration. Measurements made of transducer temperatures during various runs indicate any temperature effect is negligible. Errors compiled from individual calibrations of a large number of pressure transducers, similar to those of the B-3 tests, were used to estimate the effects of hysteresis and nonlinearity. The transducers were estimated to have probable errors within 1 percent of full-scale pressure.

The processed data included transducer error, noise error, data acquisition accuracy, and the error associated with data processing. This total probable error was estimated to be less than $1\frac{1}{2}$ percent of transducer full scale values for pressure data.

The flowmeters were calibrated by an independent laboratory with flow rates from 0 to 14 pounds per second (6.35 kg/sec) but were used over a 0- to 35-pound-per-second (15.9-kg/sec) range on the B-3 tests. The best estimate of the processed data probable error is that it is within 2 percent of the full-scale range used. This estimate includes consideration of error introduced by extrapolating the independent laboratory's test data, their calibrating facility error, and the frequency-to-dc-converter and data acquisition errors. Data processing errors were negligible.

The calibration used for copper-constantan thermocouples conforms to the calibration published by the National Bureau of Standards (ref. 3); that is, an estimated precision of $\pm 0.75^{\circ}$ F for 200° to -75° F and an estimated precision of ± 1 percent of measured values for -75° to -300° F.²

The accuracy of temperature measurements made with copper-constantan thermocouples below -300° F or 160° R (88.8 K) is difficult to assess. In the range from 160° to 30° R (88.8 to 16.7 K), the sensitivity of copper-constantan is relatively small. (Sensitivity as used herein is the change in the thermoelectric potential with change in temperature.) In the LH₂ temperature region, the sensitivity of copper-constantan is only about 1/10 that at room temperature. As a result, measurements made with copper-constantan in the LH₂ temperature regime are appreciably affected by such factors as the resolution of the data recording system, variations in the thermoelectric powers of different wire pairs, and line noise in the data acquisition system. As a result the errors associated with measurements made with copper-constantan in the LH₂ temperature region are dif-

 $^{^{2}}$ That is, an estimated precision of ± 0.42 K for 333 to 214 K and an estimated precision obtained by the formula, $\pm (2.55$ K - 1 percent), for 214 to 88.8 K, where K is Kelvin.

ficult to estimate with any reasonable confidence but are considered to be as great as $\pm 15^{\circ}$ R (8.3 K).

The turbopump speed measurements are estimated to have an error within 0.5 percent of the full scale used. However, there is a minimum estimated error of ± 50 rpm due to noise. These are total errors that include the transducer (frequency-to-dc converter) error, data acquisition error, and any processing errors. Data processing errors are generally negligible.

The accuracy of the capacitance density meter is beyond the scope of this report. The mass meter was an experimental device, and evaluation of its accuracy has not been attempted at this time due to its sporadic functioning.

The accuracies discussed in this section were only estimates; more work is required in this area. Only static accuracy estimates were made. No attempt was made to establish transient errors, which are usually due to time lags associated with the various devices.

TEST CONDITIONS SUMMARY

The test conditions used for this group of tests are summarized briefly. The tests were completed with very few problems despite the complexity of the facility and the testing procedure. Bootstrapping was achieved successfully.

The wet- and dry-pump chilldown tests were run at tank pressures of 35 and 25 psia (24.1 and 17.2 N/cm^2 abs) to obtain chilldown rates and serve as a check of the entire system with hydrogen. The chilldown parameters obtained were used in planning bootstrap tests. Wet-pump bootstrap test conditions are as follows:

Tank	pressure	Time delay after PMDV opened	Other controlled
psia	N/cm ²	and before opening TPCV, ^a	conditions
		sec	
b ₃₅	^b 24. 1	0	None
^c 25	^C 17. 2	0	
25	17.2	0	
35	24.1	10	•
b ₃₅	^b 24. 1	0	Programmed PMDV opening
25	17.2	0	Programmed PMDV opening
b ₃₅	^b 24. 1	0	Programmed TPCV for alternate
25	17.2	0	steps to increase and decrease
			speed about a constant speed

^aTime zero corresponds to initiation of flow by opening flow control valve, PMDV on these tests.

^bMaximum flows of 32 lb/sec (14.5 kg/sec) were realized for the wet-pump runs at 35-psia (24.1-N/cm²) tank pressure and zero TPCV time delay.

^CUpstream flowmeter not operating during first 2.4 sec. Most pressure and flow transducers overranged at 8 sec.

Dry-pump bootstrap test conditions are as follows:

Tank pressure		pressure	Time delay after PSOV opened	Other controlled	
	psia	N/cm^2	and before opening TPCV, ^a	conditions	
			sec		
	35	24.1	33	None	
	35	24.1	41		
	25	17.2	29	•	
	35	24.1	15	Programmed PMDV to open	
				39 percent at 0 sec. Pump	
				speed ramp programmed	
				at 1000 rpm/sec.	

^aTime zero corresponds to initiation of flow by opening flow control valve, PSOV on these tests.

Maximum flows of approximately 34 pounds per second (15.4 kg/sec) occurred for the dry-pump runs at a tank pressure of 35 psia (24.1 N/cm^2) and with long time delays on opening the TPCV. These long time delays caused the internal (thermal) energy of the system to be depleted sooner on bootstrapping so that the maximum flows were of shorter duration than for the wet-pump tests. The system had cooled down considerably, thereby resulting in a lowering of the back pressure and consequent higher flows than for the wet-pump bootstrap tests.

Two pump tests were run at tank pressures of 35 and 50 psia (24.1 and 34.5 N/cm^2). Each test was run at three speeds as shown in the following table:

Tank	pressure	Turbopump speeds used,	
psia	N/cm^2	rpm	
35	24.1	1500; 3000; 6000	
50	34.5	1500; 3000; 6000	
35	24.1	6000; 9000; 11 000	
50	34.5	6000; 9000; 11 000	

The data obtained from these tests were used for mapping the pump at the low-speed region.

These tests completed the series made at the B-3 facility at this time.

Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio, June 25, 1968, 122-29-01-09-22.

REFERENCES

- 1. Roder, Hans M.; and Goodwin, Robert D.: Provisional Thermodynamic Functions for Parahydrogen. Tech. Note 130, National Bureau of Standards, Dec. 1961.
- Goodwin, R. D.; Diller, D. E.; and Roder, H. M.: Provisional Thermodynamic Functions for Parahydrogen in Liquid, Fluid and Gaseous States at Temperatures up to 100 K and at Pressures up to 340 Atmospheres. Rep. 6791, National Bureau of Standards, Aug. 4, 1961.
- 3. Lauritzen, John A., Jr.; Coruccini, Robert J.; and Lonberger, S. T.: Reference Tables for Thermocouples. Circulat No. 561, NBS, April 27, 1955.

TABLE I. - RESEARCH INSTRUMENTATION

(a) Diffuser (fig. 4)

Instrumentation item	Measurement	Location
EP-1	Static pressure	Ejector inlet

(b) Tank (fig. 5)

DP-1 and DP-2	Static pressure	Tank top
DP-3	Static pressure	Tank bottom
DP-4 and DP-5	Static pressure	Tank transition
DR-1 and DR-2	Gas temperature	Tank top
DR-3 and DR-4	Liquid temperature	Tank bottom
LP-1	Tank liquid level	

(c) Pump inlet piping (fig. 15)

Instrumentation item	Measurement	Location	
PP-1 to PP-5	Static pressure	Pump inlet line	
PP-6 and PP-7	Flush-mounted, semicon- ductor pressure		
PP- 8	Static pressure		
PTF-1	Flush-mounted, semicon-		
	ductor temperature	↓ ↓	
DP-9	Static pressure	Purge line connection to	
		pump inlet line	
PR-1 to PR-3	Fluid temperature	Pump inlet line	
PT-1 to PT-14	Wall temperature		
	(surface thermocouple)	{	
PT-200	Wall temperature	Pump inlet line insulation	
	(surface thermocouple)	(external surface)	
PIF-1	Volume flow Meter 1 ^a		
PIF-2	Volume flow Meter 2 ^b		
PQ-1	Fluid density		
	(capacitance-type		
	meter)		
l		1	

^aFlowmeter, 4 or 8 in. (10.2 or 20.3 cm).

^bFlowmeter, 4 in. (10.2 cm) or special 4 in. (10.2 cm) with 8-in. (20.3-cm) flanges.

وبمثلثه والمتكل الفكر والكلالا

Instrumentation item	Measurement	Location
AP-1 to AP-8	Static pressure	Back vane pressure tap
AP-9		Turbine inlet manifold
AP-11		Bearing-housing pressure tap
AP-12		Cavity, turbine inlet manifold
		and first turbine rotor
AP-13 and AP-14		First turbine nozzle exit
AP-15 and AP-16		First turbine rotor exit
AP-17 and AP-18		Second turbine rotor exit
AP-19	V	Turbine exhaust collector
AT-1 and AT-2	Wall temperature	Pump roller bearing
	(surface thermocouple)	
AT-3 and AT-4		Pump ball bearing
AT-5 and AT-6		Turbine ball bearing
AT-7 and AT-8	¥	Turbine roller bearing
AT-10	Fluid temperature	Turbine inlet manifold
TT-5 and TT-6	Wall temperature	Turbine housing (exhaust
	(surface thermocouple)	section)
TT-7 and TT-8		Turbine housing (inlet section)
PT-15 and PT-16		Pump case (top)
PT-17 and PT-18	¥	Pump case (bottom)
AA-1	Acceleration	Accelerometer (radial)
AA-2	Acceleration	Accelerometer (axial)
PS-1 and PS-2	Pump speed	

(d) Turbopump (fig. 16)

(e) Pump discharge piping, systems tests (fig. 17)

Instrumentation item	Measurement	Location	
PP-9 to PP-12	Static pressure	Pump discharge line	
PP-13 to PP-15	1	Flush-mounted semiconductor pressure	
PP-16 to PP-19		Mass meter inlet	
PP-20 to PP-26		4-in. (10.2-cm) feedline (Station A)	
PP-27 to PP-29		4-in. (10, 2-cm) feedline (Station E)	
PP-54 and PP-55	¥	4-in. (10.2-cm) feedline (Station B)	
PP-56	Total (or velocity)	Upstream 4-in. (10.2-cm) feedline	
	pressure	(Station B)	
PP-57	Total (or velocity)	Downstream 4-in. (10.2-cm) feedline	
	pressure	(Station B)	
PP-58 to PP-60	Static pressure	4-in. (10.2-cm) feedline (Station C)	
PP-61 to PP-63	Static pressure	4-in. (10.2-cm) feedline (Station D)	
SP-1 to SP-4	Static pressure	Spool piece for density meter of Station A	
PTF-2	Flush-mounted semicon-	Pump discharge line	
	ductor temperature		
PR-4 to PR-6	Fluid temperature	Pump discharge line	
PR-7 to PR-9		Mass meter inlet	
PR-10		Main valve inlet	
PR-11 to PR-13		4-in. (10.2-cm) feedline (Station A)	
PR-14 to PR-16		4-in. (10.2-cm) feedline (Station E)	
PR-33		4-in. (10.2-cm) feedline (Station B)	
PR-33A and PR-33B		4-in. (10.2-cm) feedline (Station B, BLH probe)	
PR-34 and PR-35		4-in. (10.2-cm) feedline (Station B)	
PR-36		4-in. (10.2-cm) feedline (Station C)	
PR-36A and PR-36B		4-in. (10.2-cm) feedline (Station C, BLH probe)	
PR-37 and PR-38		4-in. (10.2-cm) feedline (Station C)	
PR-39 to PR-41		4-in. (10.2-cm) feedline (Station D)	
SR-1		Spool piece for density meter of Station A	
SR-1A and SR-1B		Spool piece for density meter of Station A (BLH probe)	
SR-2 to SR-4	¥	Spool piece for density meter of Station A	
PT-19 to PT-22	Wall temperature	Pump discharge line	
	(surface thermocouple)		
PT -23		Gimbal inlet hinge ring (near pump discharge)	
PT-24	♥	Gimbal exit hinge ring (near pump discharge)	

(e) Concluded. Pump discharge piping, systems tests (fig. 17)

Instrumentation item	Measurement	Location	
PT-25 to PT-28	Wall temperature	Mass meter inlet	
PT-29	(surface thermocouple)	Gimbal inlet hinge ring (L-elbow)	
PT-30		Gimbal exit hinge ring (L-elbow)	
PT-31		Inner ring (L-elbow)	
PT-32		Outer radius (L-elbow)	
PT-33 and PT-34		Pump main discharge valve	
PT-35 and PT-36		Spool piece or Station A density meter	
PT-37		Gimbal inlet hinge ring (near Station A)	
PT-38		Gimbal exit hinge ring (near Station A)	
PT-39 and PT-40		4-in. (10.2-cm) feedline (Station A)	
PT-41 to PT-48		4-in. (10.2-cm) feedline (downstream of Station A)	
PT-49 and PT-50		4-in. (10.2-cm) feedline (Station E)	
PT-52 to PT-53		Capacitance-type density meter (Station E)	
PT-110 and PT-111		4-in. (10.2-cm) feedline (Station B)	
PT-112 to PT-114		4-in. (10.2-cm) feedline (downstream Station B)	
PT-115 and PT-116		4-in. (10.2-cm) feedline (Station C)	
PT-117		4-in. (10.2-cm) feedline (downstream Station C)	
PT-118		Gimbal inlet hinge ring (near Station C)	
PT-119		Gimbal exit hinge ring (near Station C)	
PT-120		Outer radius of lower 4-in (10.2-cm-) feedline elbow	
PT-121		Inner radius of lower 4-in(10.2-cm-)feedline elbow	
PT-122 and PT-123		4-in. (10.2-cm) feedline (Station D)	
PT-124 to PT-126		4-in. (10.2-cm) feedline (downstream Station D)	
PT-127		Flange at Station E, 4-in. (10.2-cm) feedline section	
ST-1A and ST-1B	Y	Spool piece (Station A)	
PDF-1A and PDF-1B	Mass flow	Mass meter (sensor) near pump discharge	
PQ-A	Fluid density	Capacitance-type density meter (Station A)	
PQ-E	Fluid density	Capacitance-type density meter (Station E)	
PQ-EN	Fluid density	Nuclear-type density meter (Station E)	
PA-E	Acceleration	Radial accelerometer (spool piece at Station A	
		density meter)	
PA-T	Acceleration	Axial accelerometer (spool piece at Station A	
		density meter)	

COMELDENTIAL

Instrumentation item	Measurement		Location
PP-9 to PP-12	Static pressure		Pump discharge line
PP-13 and PP-14	Temperature	and pres-	Pump discharge line
	sure (flush	mounted	
	semicondu	ctor)	
PP-15	Static pressu	ire	Pump discharge line
PP-100 to PP-102			Venturi inlet
PP-103 to PP-105			Venturi throat
PP-106			Upstream of load valve
PP-107			Downstream of load valve
PP-108			Bypass orifice inlet
PP-109			Bypass orifice exit
PP-110			Downstream of orifice - load-valve
			junction to LH ₂ -GH ₂ burnoff
PP-111			Bypass orifice inlet
PP-112		,	Bypass orifice exit
PR-4 to PR-6	Fluid temper	rature	Pump discharge line
PR-100			Upstream 30 inches (76.2 cm)
			from venturi throat
PR-101			Upstream of load valve
PR-102	•	l i	Downstream of orifice - load-valve
			junction to LH ₂ -GH ₂ burnoff
PDF-10	Volume flow		Turbine flowmeter (4 in. (10.2 cm)),
			pump discharge line

(f) Pump discharge piping, pump tests (fig. 18)

Instrumentation item	Measurement	Location
TP-1 and TP-2	Static pressure	Nozzle bleed port line
TP-3 to TP-6		Upstream of venturi
TP-7 to TP-9		Venturi throat
TP-10 to TP-12	l l	Near turbine inlet
TR-1	Fluid temperature	Nozzle bleed port line
TR-2 to TR-4		Near top of vertical section of turbine
		inlet line
TR-5, TR-6A,		Near turbine inlet
TR-6B, and TR-7		
TT-1 and TT-2		Nozzle bleed port line
TT-3 and TT-4	V V	Nozzle turbine inlet
TT-11 and TT-12	Wall temperature	Nozzle bleed port line
	(surface thermocouple)	
TT-14 to TT-16,		Venturi section of turbine inlet line
TT-15A, TT-16A,		
and TT-17 to		
TT-24		
TT-25 to TT-30	♥	Horizontal line section connection to
		turbine inlet

(g) Turbine inlet line, systems tests (fig. 19)

(h) Turbine inlet line, pump tests (fig. 20)

Instrumentation item	Measurement	Location
TP-100 to TP-102	Static pressure	Upstream of venturi
TP-103 and TP-104	Static pressure	Venturi throat
TP-105 to TP-108	Static pressure	Near turbine inlet
TT-101	Wall temperature	Turbine inlet line near GH ₂ supply
TT-102 to TT-104	Wall temperature	Near turbine inlet

(i) Turbine exhaust lines (fig. 21)

TP-13 to TP-15	Static pressure	Near west line inlet
TP-16 to TP-18		Near east line inlet
TP-19 to TP-21		Near west line orifice inlet
TP-22 to TP-24		Near east line orifice inlet
TP-25 to TP-27		Near west line orifice exit
TP-28 to TP-30	Y	Near east line orifice exit
TR-8 to TR-10	Fluid temperature	Near west line inlet
TR-11 to TR-13		Near east line inlet
TT-111 and TT-112		Upstream of west line orifice
TT-113 and TT-114	¥	Upstream of east line orifice
TD-11	Wall temperature	Near west line inlet
TD-12	Wall temperature	Near east line inlet
Instrumentation item	Measurement	Location
----------------------	------------------	------------------
NP-80 and NP-81	Static pressure	Nozzle chamber
NP-82	Static pressure	Nozzle throat
NP-83 to NP-87	Static pressure	Nozzle exit bell
NT-92 to NT-100	Wall temperature	Nozzle shell
NT-101 and NT-102	Wall temperature	Nozzle band

(j) Nozzle with instrumentation (fig. 11)

(k) Nozzle inlet manifold and spider (fig. 22)

NP-1 to NP-6	Static pressure	Nozzle inlet manifold
NP-88, NP-90,	Static pressure	Nozzle inlet manifold ports
and NP-92		
NP-89, NP-91,	Total (or velocity) pressure	Nozzle inlet manifold ports
and NP-93		
NR-1 and NR-2	Fluid temperature	Nozzle inlet manifold
NR-2A and NR-2B		Nozzle inlet manifold (BLH probe)
NR-3 to NR-6		Nozzle inlet manifold
NR-7 to NR-9	↓	Nozzle inlet manifold port
NT-1 to NT-6	Wall temperature	Nozzle inlet manifold
NT-72 to NT-77	Wall temperature	Nozzle inlet spider
NT-78 to NT-80	Fluid temperature	Nozzle inlet manifold ports
NA-90 ⁰ and NA-180 ⁰	Acceleration	Accelerometer (radial)

CONFIDENTIA

معتقد المانية التي المانية الم

Instrumentation item	Measurement	Location
NP-7 to NP-10	Static pressure	Nozzle tube 2 (3 ⁰)
NP-11 to NP-13,	Static pressure	Nozzle tube 13 (25 ⁰)
NP-15 to NP-20,		
and NP-22		
NP-14 and NP-21	Total (or velocity) pressure	Nozzle tube 13 (25 ⁰)
NP-23 to NP-26	Static pressure	Nozzle tube 25 (49 ⁰)
NP-27, NP-28, and	Static pressure	Nozzle tube 37 (73 ⁰)
NP-30 to NP-32	-	
NP-29 and NP-33	Total (or velocity) pressure	Nozzle tube 37 (73 ⁰)
NP-34 to NP-37	Static pressure	Nozzle tube 49 (97 ⁰)
NP-38 to NP-40	Static pressure	Nozzle tube 58 (115 ⁰)
NP-41, NP-42,	Static pressure	Nozzle tube 72 (143 ⁰)
NP-44, and	-	
NP-45		
NP-43 and NP-46	Total (or velocity) pressure	Nozzle tube 72 (143 ⁰)
NP-47 to NP-51	Static pressure	Nozzle tube $87 (173^{\circ})$
NP-52 to NP-55	Static pressure	Nozzle tube 97 (193°)
NP-56, NP-57, and	Static pressure	Nozzle tube 133 (265°)
NP-59 to NP-61		
NP-58 and NP-62	Total (or velocity) pressure	Nozzle tube 133 (265 ⁰)
NP-63 to NP-65	Static pressure	Nozzle tube 164 (327 ⁰)
NP-66	Total (or velocity) pressure	Nozzle tube 164 (327 ⁰)
NP-67 to NP-70	Static pressure	Nozzle tube 164 (327 ⁰)
NP-71	Total (or velocity) pressure	Nozzle tube 164 (327 ⁰)
NP-72	Static pressure	Nozzle tube 164 (327 ⁰)
NP-73 and NP-74	Static pressure	Nozzle tube 170 (339 ⁰)
NP-75	Total (or velocity) pressure	Nozzle tube 170 (339 ⁰)
NP-76 to NP-78	Static pressure	Nozzle tube 170 (339 ⁰)
NP-79	Total (or velocity) pressure	Nozzle tube 170 (339 ⁰)
NT-7 to NT-10	Wall temperature	Nozzle tube 2 (3 ⁰)
NT-11 to NT-24		Nozzle tube 13 (25 ⁰)
NT-25 to NT-28		Nozzle tube 25 (49 ⁰)
NT-29 to NT-32		Nozzle tube 37 (73 ⁰)
NT-33 to NT-36		Nozzle tube 49 (97 ⁰)
NT-37 to NT-39		Nozzle tube 58 (115 ⁰)
NT-40 and NT-41		Nozzle tube 72 (143 ⁰)
NT-42 to NT-46		Nozzle tube 87 (173 ⁰)
NT-47 to NT-50		Nozzle tube 97 (193 ⁰)
NT-51 to NT-54		Nozzle tube 133 (265 ⁰)
NT-55 to NT-61		Nozzle tube 164 (327 ⁰)
NT-62 to NT-65	*	Nozzle tube 170 (339 ⁰)

(2) Nozzle coolant tubes (fig. 23)

Instrumentation item	Measurement	Location
NP-94 to NP-99	Static pressure	Nozzle chamber
NT-66 to NT-70	Fluid temperature	Nozzle chamber
NT-81 to NT-91		Instrumentation rake
and NT-103		
NT-104 to NT-106		Nozzle chamber
NT-107		Instrumentation rake
NT-108 to NT-118	↓	Nozzle chamber

(m) Nozzle chamber (fig. 24)

(n) Reflector inlet plenum (fig. 25)

RR-601 to RR-610,	Fluid temperature	Reflector inlet plenum
RR-610A, RR-610B,		
RR-611, RR-612		
RP-115, RP-116,	Static pressure	Reflector inlet plenum
RP-138 to RP-142		
RI-165, RI-175,	Windows for	Reflector inlet plenum
RI-285, RI-295	photography	
RI-345, RI-355		

(o) Reflector pressure (fig. 26)

Instrumentation item	Measurement	Location
RP-46 to RP-57	Static pressure	Graphite cylinder, 0.25 in.
		(0. 635 cm) hole
RP-58 to RP-69		Reflector segment, 0.188 in.
		(0.478 cm) hole
RP-70 to RP-81		Control drum, 0.06 in.
		(0. 15 cm) annulus
RP-103 to RP-114		Control drum, 0. 188 in.
		(0.478 cm) hole
RP-117 to RP-120		Impedance ring passage
RP-124, RP-126 to		Reflector, 0.06 in. (0.15 cm)
RP-130, RP-132		annulus
to RP-135	♥	

Instrumentation item	Measurement	Location
RT-98 to RT-121	Material temperature	Reflector segment at $\theta = 0^{\circ}$
RT-122 to RT-145		Reflector segment at $\theta = 60^{\circ}$
RT-146 to RT-169		Reflector segment at $\theta = 120^{\circ}$
RT-170 to RT-193		Reflector segment at $\theta = 180^{\circ}$
RT-194 to RT-217		Reflector segment at $\theta = 240^{\circ}$
RT-218 to RT-241	L V	Reflector segment at $\theta = 300^{\circ}$
RM-317 to RM-322	Fluid temperature	Control drum 0.06 in. (0.15 cm)
		annulus

(p) Reflector temperature (fig. 27)

(q) Pressure shell, control rod, and graphite cylinder (fig. 28)

Instrumentation item	Measurement	Location
RT-62 to RT-67	Material	Graphite cylinder, $\theta = 50^{\circ}$
RT-68 to RT-73	temperature	Graphite cylinder, $\theta = 110^{\circ}$
RT-74 to RT-79	F	Graphite cylinder, $\theta = 170^{\circ}$
RT-80 to RT-85		Graphite cylinder, $\theta = 230^{\circ}$
RT-86 to RT-91		Graphite cylinder, $\theta = 290^{\circ}$
RT-92 to RT-97		Graphite cylinder, $\theta = 350^{\circ}$
RT-263 to RT-271		Control rod, $\theta = 0^{\circ}$
RT-272 to RT-280		Control rod, $\theta = 60^{\circ}$
RT-281 to RT-289		Control rod, $\theta = 120^{\circ}$
RT-290 to RT-298		Control rod, $\theta = 180^{\circ}$
RT-299 to RT-307		Control rod, $\theta = 240^{\circ}$
RT-308 to RT-316		Control rod, $\theta = 300^{\circ}$
RT-355 to RT-357		Pressure shell, $\theta = 50^{\circ}$
RT-358 to RT-360	· · · · ·	Pressure shell, $\theta = 110^{\circ}$
RT-361 to RT-363		Pressure shell, $\theta = 170^{\circ}$
RT-364 to RT-366		Pressure shell, $\theta = 230^{\circ}$
RT-367 to RT-369		Pressure shell, $\theta = 290^{\circ}$
RT-370 to RT-372		Pressure shell, $\theta = 350^{\circ}$
RT-373 to RT-375		Pressure shell, $\theta = 50^{\circ}$
RT-376 to RT-378		Pressure shell, $\theta = 110^{\circ}$
RT-379 to RT-381		Pressure shell, $\theta = 170^{\circ}$
RT-382 to RT-384		Pressure shell, $\theta = 230^{\circ}$
RT-385 to RT-387		Pressure shell, $\theta = 290^{\circ}$
RT-388 to RT-390	¥	Pressure shell , $\theta = 350^{\circ}$
RA-90 and RA-180	Acceleration	Pressure shell, radial
		accelerometer
RA-90	Acceleration	Pressure shell, axial
		accelerometer

Instrumentation item	Measurement	Location
RR-613 to RR-624	Fluid temperature	Reflector outlet plenum
RP-82 to RP-84	Total (or velocity) pressure	Reflector segment, 0. 188 in.
		(0.478 cm) hole
RP-85 to RP-87		Reflector, 0.06 in. (0.15 cm)
RP-88 to RP-90		Reflector segment, 0. 188 in.
		(0.478 cm) hole
RP-94 to RP-96		Control drum, 0. 188 in.
		(0.478 cm) hole
RP-97 to RP-99		Control drum, 0.06 in. (0.15 cm) annulus
RP-100 to RP-102	↓ ↓	Impedance ring passage
RP-125, RP-131,	Static pressure	Reflector outlet plenum
RP-143 to RP-147		
RT-242 to RT-244	Fluid temperature	Reflector segment, 0. 188 in.
		(0. 478 cm) hole
RT-245 to RT-247		Reflector, 0.06 in. (0.15 cm) annulus
RT-248 to RT-250		Reflector segment. 0, 188 in.
		(0. 478 cm) hole
RT-254 to RT-256		Control drum. 0. 188 in.
		(0. 478 cm) hole
RT-257 to RT-260		Control drum, 0.06 in. (0.15 cm)
RT-261 and RT-262		Impedance ring passage
RO-165, RO-175,	windows for photography	Reflector outlet plenum
RO-285, RO-295,		
RO-345, RO-355	1	

(r) Reflector outlet plenum (fig. 29)

(s) Dome and core support plate (fig. 30)

Instrumentation item	Measurement	Location
RP-121 to RP-123	Static pressure	Core inlet plenum
RT-346	Fluid temperature	Core support plate flow passage
RT-347, RT-349,	Fluid temperature	Core inlet plenum
RT-350, RT-353,		
RT-354		
RT-391	Material temperature	Core support plate
RT-392	Fluid temperature	Core support plate flow passage
RT-402 to RT-415	Material temperature	Reactor dome
RT-335 to RT-341	Material temperature	Support plate
RT-342 to RT-345	Fluid temperature	Core support plate flow passage

(t) Core (fig. 31)

Instrumentation item	Measurement	Location
RP-1 to RP-5	Static pressure	Fuel element 11, 0.153-in.
		(0.389-cm) hole
RP-6 to RP-10	Static pressure	Fuel element 16, 0.153-in.
	-	(0.389-cm) hole
RP-11 to RP-16	Total (or velocity) pressure	Fuel-element hole exit
RP-28	Static pressure	Fuel-element inlet plenum
RP-29		Fuel-element exit plenum
RP-30 to RP-34		Fuel-element inlet plenum
RP-35 to RP-39		Fuel-element exit plenum
RP-40 to RP-45	Total (or velocity) pressure	Fuel-element exit plenum
RP-136 and RP-137	Static pressure	Core side pressure
RT-1 to RT-5	Material temperature	Fuel element 1
RT-6 to RT-10		Fuel element 7
RT-11 to RT-15		Fuel element 11
RT-16 to RT-20		Fuel element 14
RT-21 to RT-25		Fuel element 16
RT-26 to RT-30		Fuel element 18
RT-31 to RT-35		Module, $R = 0.6$ in.
		(1.5 cm)
RT-36 to RT-40		Module, $R = 7.2$ in.
		(18.3 cm)
RT-41 to RT-45		Module, $R = 9.6$ in.
		(24.4 cm)
RT-46 to RT-50		Module, $R = 13.9$ in.
		(35. 3 cm)
RT-51 to RT-55	▼	Module, $R = 16.1$ in.
		(40.9 cm)
RT-56	Fluid temperature	Core exit element 3
RT-57		Core exit element 7
RT-58		Core exit element 11
RT-59		Core exit element 14
RT-60		Core exit element 16
RT-61	I I I I I I I I I I I I I I I I I I I	Core exit element 18

CONFIDENTIAL

Instrumentation item	Measurement	Location
RT-416	Material temperature	Pressure shell (50 ⁰)
RT-417		Pressure shell (110 ⁰)
RT-418		Pressure shell (170 ⁰)
RT-419		Pressure shell (230 ⁰)
RT-420		Pressure shell (290 ⁰)
RT-421		Pressure shell (350 ⁰)
RT-422		Pressure shell (50 ⁰)
RT-423		Pressure shell (110 ⁰)
RT-424		Pressure shell (170 ⁰)
RT-425		Pressure shell (230 ⁰)
RT-426		Pressure shell (290 ⁰)
RT-427		Pressure shell (350 [°])

(u) Pressure shell^a (fig. 32)

^aAdditional thermocouples added at nozzle end.

DONT TUENTIAL

CONFIDENTIAL

Figure 1. - B-1 and B-3 test facilities.

CALCEL

CONFLDENTIAL

Figure 5. - Liquid-hydrogen run tank. (Instrumentation items identified in table I.)

CON

Figure 7. - Gaseous nitrogen system.

CD-9880-22

CONFIDENTIAL

CD-9881-22

Figure 8. – Gaseous helium system.

Figure 9. - Mark III, model 4 turbopump.

Figure 10. - Schematic diagram of reactor.

Instru- mentation item	Distanc top of r x	e from nozzle, c	Location on nozzle, Ø, den	Depth from outer surface							
	in.	cm	uoy	in.	cm						
Nozzle	shell th	nermoco	uple instru	mentatio	n						
NT-92 NT-93 NT-95 NT-96 NT-98 NT-99 NT-100	12.5 19.1 12.5 19.1 12.5 12.5 12.5 12.5	31. 8 48. 5 31. 8 48. 5 31. 8 31. 8 31. 8 31. 8	51 51 53 53 141 231 321	0 0.09 .09 0 0 0	0 0.23 .23 0 0 0						
Nozzle band thermocouple instrumentation (attached to outer band)											
NT-101 NT-102	46 46	117 117	51 231								
Exhaust fluid pressure instrumentation											
NP-80 NP-81 NP-82 NP-83 NP-84 NP-85 NP-86 NP-87	12, 5 19, 1 25, 7 31, 0 36, 0 40, 0 45, 25 55, 0	31. 8 48. 5 65. 3 78. 7 91. 4 101. 6 115 140	220 218 216 214 212 210 208 206								
	1			1							

CD-9883-22

Figure 11. - Nozzle with instrumentation. (Dimensions in inches (cm); instrumentation items identified in table I.)

CONFIDENTIAL

CONFIDENTIAL

1

Figure 12. - Insulated hydrogen feedline, nozzle, and bottom of reactor.

Figure 13. - Automatic run sequencer.

Ì

CONFIDENTIAL

107

CD-9884-22

Figure 15. - Pump inlet piping instrumentation. (For instrumentation on pump see fig. 16; instrumentation items identified in table I.)

CONFIDENTIAL

Instrumentation item	Location	Instrumentation item	Location	Туре
Stati	c pressure taps		Thermocouples	
AP-1 to AP-8 AP-9 AP-11 AP-12 AP-13 and AP-14 AP-15 and AP-16 AP-17 and AP-18 AP-19	Back-vane pressure taps Turbine inlet manifold Bearing housing cavity Cavity turbine inlet manifold and first turbine rotor First turbine nozzle exit First turbine notor exit Second turbine rotor exit Turbine exhaust collector	AT-1 and AT-2 AT-3 and AT-4 AT-5 and AT-6 AT-7 and AT-8 AT-10 TT-5 and TT-6 TT-7 and TT-8	Pump roller bearing Pump ball bearing Turbine ball bearing Turbine roller bearing Turbine inlet manifold Turbine housing - exhaust section Assembly housing - turbine inlet section	Chromel-alumel
Ac	celerometers	PT-15 and PT-16	Pump case (under washers of volute nut	<)
AA-1 and AA-2		PT-17 and PT-18	Volute mounting plate	Ĩ″ ↓
Tur	bopump speed			
PS-1 and PS-2				

CD-9885-22

Figure 16. - Turbopump instrumentation. (Parentheses indicate that instrumentation is located 180° opposite that which precedes it. Instrumentation items identified in table I.)

Figure 17. - Instrumentation on pump discharge piping as used on systems tests. On tests in which station E nuclear tance density meter when it was located at Station A. (Dimensions are in inches (cm); instrumentation items are

Instru- Location -				Instrumentation			Location	-		Instru-			Locatio	n -			
mentation item	in y-di	rection	In L-dire	ction	Angle at section.	item In x-direction In L-direction An Second		Angle at section,	item	In x-dir	ection	In L-dire	ction	Angle at section,			
	in,	cm	in,	cm	θ, deq		in,	¢m	ìn.	cm	θ, deq		in.	cm	in,	cm	θ, deg
Upper horizontal pump discharge piping					Station E capacitance-type density meter, PQ-E					Lower v	ertical pu	ump di	scharge pij	oing (Co	oncluded)		
PP-9			L=4	10, 2	30 120	PT-51 Inlet flange PT-52 Narrow section			90 90	^m PT-110 ^m PT-111	68.7 68.7	174 174	L2 = 0 L2 = 0	0	0 180		
PP-10 PP-11					210	PT-53	Exit fla	inge	1		90	PT-112	80.2	205	L2 = 12	30.5	335
PP-12 app-13					300		"	L'' elbo	w			PT-113 PT-114	92.7 105	255	L2 = 24 L2 = 36	91	
KPP-14			¥ 1=5	¥ 127	90 0	CPT-29	L = 60.	5 (154)				PT-115	117 117	296	L2 = 48 L2 = 48	122	115
app-13			L=6	15.2	240	PT-30	L = 60. Inner	5 (154) radius				PT-117 Cpt-119	125	317	L2 = 56	142	335 35
PP-16 PP-17			L = 32.9	83.5	0 90	PT-32	Outer	radius	ream from		270	dpT-119	136.5	347			35
PP-18					180 270	FK-IO	outle	st flang			2.0	PT-120	145 145	367 367			0 180
PR-4			L = 7.6	19.4	60	Upper vertical pump discharge piping				Spool pie	ece for de	ensity i	neter adiad	cent to :	Station A		
PR-5			L=7.6 L=7.6	19.4 19.4	150 270	9pp-24	.12	30.5	11 - 7	18	90	PA-E	1.5 (3	3. 8) fro	m inlet fla	inge	270
^b PR-7		<u>-</u>	L = 34.4	87.3	75	9PP-25 9PP-26	12	30.5	L1 = 7	18	270	PA-T	1, 5 (3	8, 8) fro	om inlet fla	inge	270
bPR-9			L= 34.4	87.3	315	hpp_20 hpp_21	10.5	26.7	L1 = 5, 5	14	45	PT-35	3 (7	. 6) dov	vnstream f	rom	30
PT-19			L=2	5.1	45 225	hpp-22					225	91-36 ST-1A		niet fla	inge I		210
PT-21			L=6	15.2	45	прр-23 9рд-11	1	7.6	¥ L1 = 7	18	315	ST-1B					45
PT-22			L = 6	15.2 32.7	225	9 _{PR} -12	Í		LI = 7	18	120	SP-1 SP-2					90
d _{PT-24}		~	L = 12.9	32,7	·	9PR-13 CPT-37			LI = 7 	18	240 	SP-3			1		180 270
PT-25			L = 31.5	80 80	45 225	dрт-38	*	27.0		15 2		SP-1	450	11 4) d	ownstream	from	45
Low	Lower horizontal pump discharge piping PP-61 11.4 28.9 L3 = 0 0 90			PT-59	11	27.9	L1 = 6	15.2	210	SR-1A	inl	et flan	ge		45		
epp-61	11.4	28.9	L3 = 0	0	90	PT-41 PT-42	23	58.4	L1 = 18 L1 = 18	46	210	SR-18 SR-2					45 135
epp-62 epp-63					180 270	PT-43	35	89	L1 = 30	76	30	SR-3			Ļ		225
PR-39					0	PT-44 PT-45	- 22 - 47	119	L1 = 30	107	30	56-4		Mace	Houmotor		
PR-40 PR-41					120 240	PT-46	47	119	L1 = 42	107	210	DT 07	0	IVIGSS I	Towneter		45
PT-122					30 210	PT-48	59	150	L1 = 54	137	210	PT-27	Cente	erea ered			45 225
PT-123	25.4	64.5	L3 = 14	35.6	30	Lower	vertica	l pump	discharge	piping	1	PDF-1A	Flown	neter			
PT-125	37.4 37.4	94.9 94.9	L3 = 26 L3 = 26	66 66	30 30	Mpp-54 Mpp-55	68.7	174	L2 = 0	0	35 125	PDF-1B	Flown	neter			
^f PT-127	42.5	108	L3 = 31, 1	79	90	^m PP-56 (P _T -up)					215		Pump ma	in disc	charge valv	e (PMD	V)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					npp-57 (PT-00)	116.7	296	L2 = 48	122	35	PT-33 PT-34	Out	er sur	face of valv	/e	
PP-27	1.9	4 in. (4	.9 cm) fro	m	150 180	прр-59 прр-60	116.7	296	L2 = 48	122	125 215		, out	or sur		r.	
PP-29	27 1.94 in. (4.9 cm) from 15 28 inlet face 18 29 1.94 in. (4.9 cm) from 18			210	mpR-33B	68.7	174	L2 = 0	0	305							
PR-14	9.94	4 in. (2	5, 2 cm) fro	m	Low 1/4	^m PR-33A ^m PR-33					305 305					I	
PR-15	ir	nlet face)		diam 90	^m PR-34					65						
PR-16			ł		Up 1/4	PR-36	116.7	296	L2 = 48	122	305						
) 111	Indeur	contorling			PR-37 PR-38					65 185						
PT-49 PT-50	} w	interse	ect		90	PR-36A PR-36B					305 305						

^aFlush-mounted semiconductor temperature-pressure transducer (PP-13 relocated to L = 6 in. (15.2 cm) prior to first bootstrap test). ^bMass meter inlet.

⁹Station A-2. ^hStation A-1. ⁱElbow outer radius.

^mStation B. ⁿStation C.

^cGimbal inlet hinge ring. ^dGimbal outlet hinge ring. ^eStation D. ^fFlange.

density was used, station capacitance-type density meter was transferred to Station A. Thermocouples PT-35 and PT-36 only were attached to capaciidentified in table I.)

Libow inner radius. KPP-14 not used after last chilldown test. Station A.

Instru- mentation item	Distanc top of 1	ce from rozzle, t	Distance along length of pipe	Angle at section, θ,	Instru- mentation item	Distanc top of r	ce from nozzle, t	Distance along length of pipe	Angle at section, θ,
	'n.	e C		Geg		,Ľ	E		neð
	bump	discharç	ge load valve and bypass section		PR-102	346	876	5 in. (12.7 cm) down from downstream bypass junction	R
PP-106	256	650	12 = 11 in. (28 cm) upstream of valve flance (at unstream	8			Pa	np discharge line	
			pass junction)		6-dd	1	1	L = 4 in. (10.2 cm) from pump	æ
PP-107	314	102	L3 = 9 in. (23 cm) downstream	0	PP-10	1	ļ	flange	120
			of valve flange		II-dd		1		210
PP-108	319	810	Orifice upstream	8	PP-12				000
PP-III	319	810	Orifice upstream	270	app-13		ł		0
PP-109	321	815	Orifice downstream	6	app-14				6
PP-112	321	815	Orifice downstream	270	PP-15			L = 5 in. (12.2 cm)	0
PP-110	¥5	870	5 in. (12.7 cm) down from	330	PR-4			L = 7.6 in. (19.4 cm)	3
			downstream bypass junction		PR-5	1	-	L = 7.6 in. (19.4 cm)	150
PR-101	528	650	12 = 11 in. (28 cm) upstream	0	PR-6			L = 7,6 in. (19.4 cm)	270
			of valve flange (at upstream						
			(iinitaline conden						
^a Flush mour	nted ser	iconduc	ther temperature-pressure transc	hucers					
(PTF-2 us	ed to de	signate 1	temperature measurements of PF	-13					

Figure 18. - Instrumentation on pump discharge piping as used on pump tests. Bypass section actual location is beneath PDLV, as represented in figure 3. (Dimensions are in inches (cm); instrumentation items identified in table 1.)

transducer.)

CD-9887-22

Figure 19. - Turbine inlet line instrumentation, system tests. (Dimensions are in inches (cm); instrumentation items are identified in table I.)

Figure 20. - Turbine inlet line instrumentation, pump tests. (Instrumentation items are identified in table I.)

Figure 21. - Turbine exhaust instrumentation, pump and systems tests. (Instrumentation items are identified in table I.)

Figure 22. - Nozzle inlet manifold and spider instrumentation. (Dimensions in inches (cm); instrumentation items are identified in table I.)

Figure 23. - Nozzle coolant tube instrumentation. (See fig. 11 for coolant tube location; instrumentation items are identified in table I.)

CONSIDENTIAL

$\frac{105^{\circ} 30'}{11 \text{ tubes blocked}} = -\text{NP-95}$ $\frac{127^{\circ} 30'}{0 - \text{NT-104}} = \text{Exhaust gas}$	Instrumentation item	Location on nozzle, θ, dec	Distano nozzle ce R	ce from enterline,
O− NT-66 thermocouple rake		ucg	in.	cm
11 tubes blocked NP-96 - Camera light port NT-105 Camera light port NT-105 Camera light port NT-105 Commetion port Connection port NT-112 O-NT-110 O-NT-107 NT-80 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-110 NT-70 O-NT-107 NT-98 NT-70 O-NT-108 NT-70 O-NT-108 NT-70 O-NT-108 NT-70 O-NT-108 NT-998 D-NT-108 D-	NT-66 NT-67 NT-68 NT-67 NT-68 NT-69 NT-70 NT-81 NT-82 NT-83 NT-84 NT-85 NT-83 NT-84 NT-85 NT-85 NT-86 NT-87 NT-88 NT-89 NT-90 NT-90 NT-90 NT-90 NT-90 NT-90 NT-90 NT-90 NT-104 NT-105 NT-106 NT-107 NT-108 NT-109 NT-110 NT-111 NT-112 NT-114 NT-115 NT-116 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-116 NT-117 NT-118 NT-116 NT-117 NT-118 NT-116 NT-117 NT-118 NT-117 NT-118 NT-116 NT-117 NT-118 NT-116 NT-117 NT-118 NT-116 NT-117 NT-118 NT-116 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-118 NT-117 NT-117 NT-118 NT-117 NT-117 NT-118 NT-117 NT	Location on nozzle, θ, deg 88 148 174 268 328 20 ¥ 200 ¥ 200 90 150 176 200 90 150 176 200 90 150 176 270 330 90 150 176 270 330 90 150 176 270 330 90 150	Distant nozzle ce R in. 14 15 12 9 6 3 0 3 6 9 12 15 17 17 12 9 6 3 0 3 0 12 15 17 17 11 11 11	cm 35.6 38.1 30.5 22.9 15.2 7.6 0 7.6 15.2 7.6 0 7.6 15.2 7.6 0 7.6 15.2 22.9 30.5 38.1 43.2 27.9 32.3 45.7
	NP-94	26	18	45.7
	NP-95	86		
	NP-96	146		
	NP-98	266		
	NP-99	326		↓
Inside wall of nozzle —				

Detail of nozzle chamber thermocouple rake

CD-9893-22

Figure 24. - Nozzle chamber instrumentation. (All instrumentation located 4 in. (10.2 cm) from top of nozzle; instrumentation items are identified in table I.)

CONFIDENTIAL

Figure 25. - Reflector inlet plenum instrumentation. (Instrumentation items are identified in table I.)

CONFIDENTIAL

				1						
Instru- mentation item	Distance from top of module, Z in. cm		Distance from top of module, Z		Location on nozzle, 0, deg	Instru- mentation item	Distant top of r	ce from nodule, Z	Location on nozzie, 0, deg	
	in.	cm			in.	CM	ů	l		
RP-46 RP-47 RP-48 RP-49 RP-50 RP-51	1.25 7.25 13.25 29.25 36.25 49.38	3, 18 18, 41 33, 66 74, 30 92, 08 125, 4	351°40'	RP-76 RP-77 RP-78 RP-79 RP-80 RP-81	1. 25 7. 25 13. 25 24. 25 36. 25 51, 25	3, 18 18, 41 33, 66 61, 60 92, 08 130, 2	177			
RP-52 RP-53 RP-54 RP-55 RP-56 RP-57	1. 25 7. 25 13. 25 24. 25 36. 25 49. 38	3, 18 18, 41 33, 66 61, 60 92, 08 125, 4	171°40'	RP-103 RP-104 RP-105 RP-106 RP-107 RP-108	1, 25 7, 25 12, 25 24, 25 36, 25 51, 25	3, 18 18, 4 31, 12 61, 60 92, 08 130, 2	357			
RP-58 RP-59 RP-60 RP-61 RP-62 RP-63	1, 25 7, 25 13, 25 24, 25 36, 25 51, 25	3, 18 18 41 33, 66 61, 60 92, 08 130, 2	348°20'	RP-109 RP-110 RP-111 RP-112 RP-113 RP-114	1, 25 7, 25 12, 25 24, 25 36, 25 51, 25	3, 18 18, 41 31, 1 61, 60 92, 08 130, 2	177			
RP-64 RP-65 RP-66 RP-67 RP-68 RP-69	1, 25 7, 25 13, 25 24, 25 36, 25 51, 25	3, 18 18, 41 33, 66 61, 60 92, 08 130, 2	168°20'	RP-117 RP-118 RP-119 RP-120	1, 25 7, 25 1, 25 7, 25	3. 18 18. 41 3. 18 18. 41	330 330 150 150			
RP-70 RP-71 RP-72 RP-73 RP-74 BP-75	1. 25 7. 25 13. 25 24. 25 36. 25	3, 18 18, 41 33, 66 61, 60 92, 08	357	RP-124 RP-126 RP-127 RP-128 RP-129 RP-130	1.00 13.25 24.25 36.25 51.25 1.00	2, 54 33, 66 61, 60 92, 08 130, 2 2, 54	350			
KF-12	, 22	130, 2	•	RP-132 RP-133 RP-134 RP-135	13, 25 24, 25 36, 25 51, 25	33, 66 61, 60 92, 08 130, 2				

CD-9895-22

Figure 26. - Reflector pressure instrumentation. (Z reference plane given in fig. 31; instrumentation items are identified in table I.)

۴

Instru- mentation item	u- Distance from tion top of module, n Z		Instru- mentation item	Distan top of	ce from module, Z	Instru- mentation item	Distan top of	ce from module, Z	Instru . mentation item	Distan top of	ce from module, Z
	in.	cm		in,	cm		in.	cm		IN,	CM
RM-317	1, 25	3, 18	RT-128	1, 25	3, 18	RT-164	1, 25	3, 18	RT-200	1, 25	3, 18
RM-318	16, 25	41, 28	RT-129	16, 25	41, 28	RT-165	16, 25	41, 28	RT-201	16, 25	41, 28
RM-319	28, 25	71, 76	RT-130	28, 25	71, 76	RT-166	28, 25	71, 76	RT-202	28, 25	71, 76
RM-320	37, 25	94, 62	RT-131	39, 25	99, 70	RT-167	39, 25	99, 70	RT-203	39, 25	99, 70
RM-321	45, 25	114, 9	RT-132	45, 25	114, 9	RT-168	45, 25	114, 9	RT-204	45, 25	114, 9
RM-322	51, 25	130, 2	RT-133	51, 25	130, 2	RT-169	41, 25	130, 2	RT-205	51, 25	130, 2
RT-98	1, 25	3. 18	RT-134	1, 25	3, 18	RT-170	1, 25	3, 18	RT-206	1, 25	3, 18
RT-99	16, 25	41. 28	RT-135	16, 25	41, 28	RT-171	16, 25	41, 28	RT-207	16, 25	41, 28
RT-100	28, 25	71. 76	RT-136	28, 25	71, 76	RT-172	28, 25	71, 76	RT-208	28, 25	71, 76
RT-101	39, 25	99. 70	RT-137	39, 25	99, 70	RT-173	39, 25	99, 70	RT-209	39, 25	99, 70
RT-102	45, 25	114. 9	RT-138	45, 25	114, 9	RT-174	45, 25	114, 9	RT-210	45, 25	114, 9
RT-103	51, 25	130. 2	RT-139	51, 25	130, 2	RT-175	51, 25	130, 2	RT-211	51, 25	130, 2
RT-104	1, 25	3. 18	RT-140	1, 25	3. 18	RT-176	1, 25	3, 18	RT-212	1, 25	3. 18
RT-105	16, 25	41. 28	RT-141	16, 25	41. 28	RT-177	16, 25	41, 28	RT-213	16, 25	41. 28
RT-106	28, 25	71. 76	RT-142	28, 25	71. 76	RT-178	28, 25	71, 76	RT-214	28, 25	71. 76
RT-107	39, 25	99. 70	RT-143	39, 25	99. 70	RT-179	39, 25	99, 70	RT-215	39, 25	99. 70
RT-108	45, 25	114. 9	RT-144	45, 25	114. 9	RT-180	45, 25	114, 9	RT-216	45, 25	114. 9
RT-109	51, 25	130. 2	RT-145	51, 25	130. 2	RT-181	51, 25	130, 2	RT-217	51, 25	130. 2
RT-110	1, 25	3, 18	RT-146	1, 25	3. 18	RT-182	1, 25	3, 18	RT-218	1, 25	3, 18
RT-111	16, 25	41, 28	RT-147	16, 25	41. 28	RT-183	16, 25	41, 28	RT-219	16, 25	41, 28
RT-112	28, 25	71, 76	RT-148	28, 25	71. 76	RT-184	28, 25	71, 76	RT-220	28, 25	71, 76
RT-113	39, 25	99, 70	RT-149	39, 25	99. 70	RT-185	39, 25	99, 70	RT-221	39, 25	99, 70
RT-114	45, 25	114, 9	RT-150	45, 25	114. 9	RT-186	45, 25	114, 9	RT-222	45, 25	114, 9
RT-115	51, 25	130, 2	RT-151	51, 25	130. 2	RT-187	51, 25	130, 2	RT-223	51, 25	130, 2
RT-116	1, 25	3. 18	RT-152	1, 25	3, 18	RT-188	1.25	3. 18	RT-224	1.25	3, 18
RT-117	16, 25	41. 28	RT-153	16, 25	41, 28	RT-189	16.25	41. 28	RT-225	16.25	41, 28
RT-118	28, 25	71. 76	RT-154	28, 25	71, 76	RT-190	28.25	71. 76	RT-226	28.25	71, 76
RT-119	39, 25	99. 70	RT-155	39, 25	99, 70	RT-191	39.25	99. 70	RT-227	39.25	99, 70
RT-120	45, 25	114. 9	RT-156	45, 25	114, 9	RT-192	45.25	114. 9	RT-228	45.25	114, 9
RT-121	51, 25	130. 2	RT-157	51, 25	130, 2	RT-193	51.25	130. 2	RT-229	51.25	130, 2
RT-122 RT-123 RT-124 RT-125 RT-126 RT-127	1, 25 16, 25 28, 25 39, 25 45, 25 51, 25	3, 18 41, 28 71, 76 99, 70 114, 9 130, 2	RT-158 RT-159 RT-160 RT-161 RT-162 RT-163	1, 25 16, 25 28, 25 39, 25 45, 25 51, 25	3, 18 41, 28 71, 76 99, 70 114, 9 130, 2	RT-194 RT-195 RT-196 RT-197 RT-198 RT-199	1, 25 16, 25 28, 25 39, 25 45, 25 51, 25	3, 18 41, 28 71, 76 99, 70 114, 9 130, 2	RT-230 RT-231 RT-232 RT-233 RT-234 RT-235 RT-236 RT-237	1. 25 16. 25 28. 25 39. 25 45. 25 51. 25 1. 25 16. 25	3. 18 41. 28 71. 76 99. 70 114. 9 130. 2 3. 18 41. 28
									RT-238 RT-239 RT-240 RT-241	28, 25 39, 25 45, 25 51, 25	71.76 99.70 114.9 130.2

CD-9896-22

"Figure 27. - Reflector temperature instrumentation. (Z reference plane given in fig. 31; instrumentation items are identified in table I.)

														_							_										
ce from nodule, Z	сш	3.18 71.76	130. 2	3.18	130.2	3. 18	71.76	7 'NCT	72.39	130.2	3, 18	71.76	130. Z	3,81	72.39	0.161	3.81	120 °	0 .0.71	3.81	130.8		7, 28	130.8	2 01	10 50	130.8	2 01	72.39	130.8	
Distanc top of n	in.	1, 25 28, 25	51.25	1, 25 2, 25	2 K 2 K	1. 25	28, 25 28, 25	2.10	2 S -' 8	51, 25	1. 25	28, 25	51.25	1.50	8 8 8 1	2.1	- 1 2 2 2 2 2		R T	1.50	2 S S S S		-7 %	50.12	2	- 5 - 7	3 IZ	5	₹ £ ∹ %	51.50	
Instru- mentation item		RT-358 RT-359	RT-360	RT-361	R1-362 R1-363	RT-364	RT-365	000-12	RT-368 RT-368	RT-369	RT-370	RT-371	RT-372	RT-373	RT-374	<i>сіс</i> -13	RT-376	KI-3//	0/C-11	RT-379	RT-380 PT-381		RT-382 DT-393	RT-384	DT 205	DT-205	RT-387	DT-200	RT-389	RT-390	
ce from nodule, Z	cm	5.71 71.76	127.6	6.35	127.0	5.71	71.76	0.121	17. C	127.6	6.35	72.39	127.0	5.7	71.76	0.121	5.71	11.76	171.0	6.35	127.0		5.71	127.6	7	7.17	127.6	01 0	or .c	130.2	
Distanc top of r	in.	2.25 28.25	50.25	2.50	20 S	2, 25	28.25	2 2	222	50.25	2, 50	22 22	20.02 05	2.25	28, 25	2.2	2.25	28.29	21.12	2.50	88	3	2.25 2.52 2.52	5 2 2 2 2	10	7 % 7 %	ំន ខ្ល	2	0.12 78	51.25	
Instru- mentation item		RT-287 RT-288	RT-289	RT-290	RT-292	RT-293	RT-294	KI-292	KI-290 RT-297	RT-298	RT-299	RT-300	RT-301	RT-302	RT-303	1-10c	RT-305	R1-306	/NC-131	RT-308	RT-309 PT-310		RT-311 DT-312	RT-313	DT. 214	R1-214	RT-316	DT 265	RT-356	RT-357	
ce from nodule, Z	cm	3. 18 71. 76	125.4		126.0	3. 18	71.76	12.4	\$ \$ \$	127.0	5.72	71.76	127.6	5.72	71.76	121.0	6.35	72.39	n.,	5.71	71.76		5.72	127.6	1	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	127.0	1	71.76	127.6	
Distance top of n	in.	1. 25 28. 25	49, 38	1. 50 50	49. 62	. 1, 25	28, 25	49, 38	2 20	50.00	2,25	28.25	50, 25	2.25	28, 25	2	2.50	8 8 8 8	90.UC	2.25	28. 25 25. 25	i i	2.25	3 5 2 5 2 5		2 2	8 B	10.0	28.25	50. 25	
Instru- mentation item		RT-89 RT-90	RT-91	RT-92	RT-93	RT-95	RT-96	KI-9/	RT-263 RT-264	RT-265	RT-266	RT-267	RT-268	RT-269	RT-270	KI-2/1	RT-272	RT-273	KI-2/4	RT-275	RT-276 DT-277	3	RT-278	RT-280		KI-281	RT-283	100	K1-284 RT-285	RT-286	
te from nodule,	cm	38. l 29. 2	45.6	45.6	45.6	45.7	3.81	72.39	,	3. 18 71. 76	125.4	3.81	72.39	126.0	3.18	71.76	125.4	3.81	72.39	126.0	3.18	71.76	+ .01	2, 2, 8I	126.0		3.18	125.4		10°r	126.0
Distanc top of n	ų.	15 11.5	18	18	18.0	18	1.50	28.50 A 63		28.23	49.38	1.50	28.50	49.62	1.25	28.25	49.38	1, 50	28.50	49, 62	1.25	2 8 82 9	or '4	R 8	8 8 8 8 8	1	, 1. 25 25	7 67 7 67 7 67		23.25	49.62
Instru- nentation item		RA-0 RA-A	RA-90A	RA-90	RA-180	RA-270	RT-62	RT-63 PT-64		R1-65	RT-67	RT-68	RT-69	RT-70	RT-71	RT-72	RT-73	RT-74	RT-75	RT-76	RT-77	RT-78	KI-17	RT-80	R1-81	5	RT-83	RT-85		RT-87	RT-88

Figure 28. - Pressure shell, control rod, and graphite cylinder temperature and acceleration instrumentation (Z reference plane given in fig. 31). Additional thermocouples added to pressure shell at nozzle end, as shown in figure 32. (Dimensions are in inches (cm); instrumentation items are identified in table L)

68

CONFIDENTIA

CD-9897-22

Instru-

mentation

item

RO-165

RO-175

RO-285

RO-295

RO-345

RO-355

RP-82

RP-83

RP-84

RP-85

RP-86

RP-87

RP-88

RP-89

RP-90

RP-94

RP-95

RP-96

RP-97

RP-98

RP~99

RP-100

RP-101

RP-102

RP-125

RP-131

RP-143

RP-144

RP-145

RP-146

RP-147

CD-9898-22

Figure 29. - Reflector outlet plenum instrumentation. (Instrumentation items are identified in table I.)

Instru-

mentatio

item

<u>Locatio</u>n

Distance in

y-direction

16.30 41.40

20.00 50.80

31. 84 80. 88

25.72 65, 32

28, 83 73, 22

14.82 37.64

2, 92 7.42

20.00 50, 80

21.48 54.56

23.70 60, 20

23.70 60.20

25, 18 63, 96

20.74 52.67

25. 53 64. 83

Location on nozzle,

θ, deg

354

342

162

354

174

Location

on nozzle,

θ. deg

170

350

110

170

230

290

350

50

110

170

230

290

350

CD-9899-22

50

Distance in

x-direction

cm in. cm

cm

cm

-25.4

-24.1

-19.7

CONFIDENTIAL

			<u> </u>													T			T																							
. uo	Distance from top of module, Z	in, cm	3.11 7.90	18.73 47.57	34, 36 87. 27	50.00 127.00 2.6 6.6	10. 41 26. 44	18. 23 46. 30	33.86 86.00	44.5 1.63.1 2.6 6.6	10.41 26.44	18. 23 46. 30	33.86 86.00	49.5 125.7	1.5 5.8 51.5 131.0	Location on	core,	e, deg	135	-			;	2) <u>—</u>			;	15	;			75		_		-	د -				
Locati	location,	сш	40.9		,	24 1			>	363	<u>}</u> –		_,	- ;	9°2 19°7	ocation.	~	cm	43	16. 0	2.1	2.5	43.4	43.0	43.9	15.7	70.8 70.8	33.3	35.6	8	20.8	3.5 9.5	4.32	16.0	8.8 8	35.3	43.2	4.32	2.4 2.4	32.8	35.3	45.2
	Radial 1	in.	16.1			95	;			14 3	2-			F	18.2 18.2	Radial		in.	1.7	6,3	8.7		17.1	17 3	17.3	6,2	. 5.8	13.1	14 0 6 2	2	8.2	14.0	1.7	6,3	2 % 2 %	13.9	17.0	1' '	∩∞ d∞	12.9	13.9 13.9	L/. U
Instru-	mentation item		RT-51 DT 52	RT-53	RT-54	RT-55 RP-1	RP-2	RP-3	RP-4	RP-6	RP-7	RP-8	RP-9	RP-10	RP-130 RP-137			-	RP-11	RP-12	RP-13	RP-15	RP-16	80-28	RP-29	RP-30	RP-32	RP-33	RP-34 RP-35	RP-36	RP-37	КР-38 RP-39	RP-40	RP-41	RP-42	RP-44	RP-45	RT-56	RT-58	RT-59	RT-60	K1-01
	ce from nodule, Z	g	2. 5 <u>4</u> 32 4	42,24	81.94	121.7 6.6	26.44	46.30	86.00	- 'GI	26.44	46.30	86.00	125.7	0.0 26.44	46.30 86.30	ou. uu 125. 7	6.6	82, 44 84, 44	20.78	125.7	66	26.44	46.30	80. UU 125. 7	00 2	27.74	47.57	87.27 127 0	7.90	27.74	72.78	127.0	7.90	27.74 77 57	87.27	127.0	2. 20	47.57	87.27	127.0	
tion	Distanc top of n	Ë	1 1 00	0.01 16.63	32.26	47.9 2.60	10.41	18.23	33.86 7	2.4 1 ,0	10.41	18.23	33.86	49.5 2	2.0 10.41	18.23	49.5	2.6	10.41	33 %	49.5	26	10.41	18,23 23	49.5	2 11	10.92	18.73	8 G 8 G	3.11	10.92	18, /3 34, 36	50.00	3.11	10.92 18 73	34,36	50.00	3, 11	10. 72 18. 73	34,36	50.0	
Loca	ocation, t	сш	0, 43			15.0	-			24 4	r —		,	- 2	21.8		>	36.6			->	43.2	; —		;				-	18.3			*	24, 43			-	35.3		_,	-	
Radial Ic	Radial I	în.	0, 17			5 9				0 6	?			-25	- - -		>	14,4				17 0			;	1	- n			7.2			•	9.62			•	13.9		-+	-	
Instru-	mentation item		RT-1	RT-3	RT-4	RT-5 RT-6	RT-7	RT-8	RT-9		RT-12	RT-13	RT-14	RT-15	RT-17	RT-18 DT-10	RT-20	RT-21	RT-22 RT-23	RT-24	RT-25	RT-26	RT-27	RT-28	RT-29 RT-30	DT.31	RT-32	RT-33	R1-34 RT-35	RT-36	RT-37	RT-38	RT-40	RT-41	RT-42 DT-42	R1-44	RT-45	RT-46	RT-48	RT-49	RT-50	

Figure 31. - Core instrumentation. (Instrumentation items are identified in table I.)

CD-9900-22

ONLEIDENTIAL....

71

CUNTERING

Figure 32. - Reactor pressure shell instrumentation at nozzle end. Copper-constantan thermocouples; thermocouple locations, angle and height, are shown in figure 31. (Dimensions are in inches (cm); instrumentation items are identified in table I.)

CONFIDENTIAL

CONCIDENTIA

QUELDENTIAL

Figure 34. - Schematic diagram of pump tests data processing.

ETT TITLES

ICIDENITIA L

CONFIDENTIAL

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

