Skip to main content


Binary Colloidal Alloy Test-6 (BCAT-6)

The Binary Colloidal Alloy Test-6, Phase Separation (BCAT-6), Phase Separation) experiments examine conditions that result in colloidal crystallization, melting, self-organization, and phase separation of colloidal systems. The evolution toward equilibrium through time is captured on the International Space Station (ISS) or with the accurate measurement of time frames correlated to the pictures taken by a new kind of automated camera.

There are three principle objectives associated with the phase separation studies in BCAT-6, Phase Separation. The first objective is to measure phase separation rates in microgravity in order to develop the underlying theory for predicting product shelf life. The second is to understand how to control the colloidal forces between particles to determine the physics underlying the phase separation process that forces the placement of additives in products to extend their shelf life. It is for this reason, among others, that finding the critical point is so important. The critical point is the point at which gas transitions into a liquid or supercritical fluid. A supercritical fluid has the properties of both a gas and a liquid. The final objective is to understand the fundamental properties of colloid-polymer mixtures to further improve the commercial utilization of these systems. The fundamental fluid physics research could provide the understanding needed to enable the development of better, less expensive, longer shelf-life household products, foods, and medicines. Stabilizers in these products are expensive, take up volume, and are needed to extend the life of products.

Provide feedback