Skip to main content

Electrified Aircraft Propulsion (EAP)

NASA Glenn's research in Electrified Aircraft Propulsion (EAP) offers new possibilities for reducing fuel and energy usage in aviation. Innovative technologies, aircraft concepts, test aircraft, and ground test facilities will turn this vision of efficient flight from science fiction to reality.

Overview

From air taxis to subsonic transports, EAP will benefit the U.S. economy, the environment, and the flying public. These planes will be quieter, safer, and longer range, while offering cleaner air and cheaper airfare. 

“I feel like I’m working at the forefront of the future, at the cutting edge of aviation.” – NASA Glenn EAP Researcher

Technology

To make electrified aircraft an efficient and commercial reality, several advanced technologies and innovative features are being developed for the electric power and thermal management systems.  

Airplane Concepts

NASA and its industry partners have conducted conceptual aircraft design studies to estimate fuel and emissions reductions and to determine the technological requirements for each configuration. Aircraft concepts span a range of sizes, markets, and technology assumption time frames.

Take a look at some of our flight demonstrators.

Facilities

NASA’s Glenn Research Center is home to world-class facilities designed for testing EAP technologies. Explore some of the buildings, machines, and testbeds enabling groundbreaking research and development for future electrified aircraft.

EAP in the News

Hear from the experts behind EAP projects about the development and impacts of their research in the NASA features below.

Image of the red and blue paint schemes for the EPFD project's two hybrid electric aircraft.
Credits: NASA

NASA, Industry Partners Unveil Hybrid Electric Aircraft Paint Schemes

GE Aerospace and magniX have revealed the paint schemes of the hybrid electric aircraft they will fly as part of NASA’s Electrified Powertrain Flight Demonstration (EPFD) project.

25 july, 2023
The GE Hybrid-Electric Motor and its related components were tested in NASA’s Electric Test Bed (NEAT) in Sandusky, Ohio on Oct. 10, 2021.
Credits: GE Aviation

NASA, GE Complete Historic Hybrid-Electric Propulsion Tests

NASA’s Electric Aircraft Testbed (NEAT) allows U.S. technology developers from industry, academia, and government to take experimental aircraft power systems through their design, development, assembly, and test phases.

18 july, 2022
Turboprop Concept image
NASA illustration of an advanced subsonic aircraft with an Electrified Aircraft Propulsion system. Credits: NASA

NASA Issues Contracts to Mature Electrified Aircraft Propulsion Technologies

NASA has selected two U.S. companies to support its Electric Powertrain Flight Demonstration (EPFD) that will rapidly mature Electrified Aircraft Propulsion (EAP) technologies through ground and flight demonstrations.

30 September, 2021
Credits: Vehicle image created by Scott Anders, Rich Wahls and Lillian Gipson; Forest Imagery franckreporter, E+, GettyImages

NASA Aims for Climate-Friendly Aviation

NASA Aeronautics and industry partners are expanding research for sustainable aviation by developing and testing new green technologies for next-generation aircraft to accomplish aviation’s goal of net-zero emissions by 2060. 

02 June, 2021

Frequently Asked Questions

Why EAP?

High-efficiency electrified aircraft will require less energy, reduce the impact of air travel on the environment, and allow for cheaper air travel.

When will this technology be implemented commercially?

The correct building blocks are in place to have a viable large-plane EAP configuration tested by 2025 leading to entry into service in 2035.

We have electric cars, so why haven’t we had electric aircraft earlier?

Weight. Although a lighter car can have longer range than a heavier car, weight is less of a concern because ground vehicles don’t have to fight against gravity. The heavier an aircraft, the more power it requires for flight.

Also heat. In current power systems, 20% of energy is dissipated as excess heat that must be cooled.

A single-aisle size electric aircraft made with the technologies currently available would ultimately be too heavy to fly, and would require extra weight and energy to cool its components. Simply put, the plane would be inefficient. NASA is developing new technologies including motors, converters, circuit breakers, batteries, and cooling systems to keep components cooled while minimizing weight and heat loss.

What are some exciting developments in propulsion systems?

NASA’s High-Efficiency Electrified Aircraft Thermal Research (HEATheR) advanced power system showed the feasibility of a power system with 4x less loss and heat generation than the current state-of-the-art power system model. The power system driving the aircraft’s propellors, paired with an efficient cooling system, can result in a fuel-burn reduction of up to 15% depending on the type of aircraft model.

The High-Efficiency Megawatt Motor (HEMM) will have 99% efficiency and features new technologies including superconducting materials and self-cooling components.

Contact EAP

"*" indicates required fields

Name*
I would like to receive more information on the following:*
This field is for validation purposes and should be left unchanged.
Provide feedback